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Chapter One

Real Sequences

Introduction

One of the basic notions of analysis is that oéquence (finite or infinite). It is closely
connected with the theory of mappings and sets,itaisdas much important as sets and

points are to mathematics. Therefore we considezri.

In this chapter we will study sequences from dédfdgrangle. For instance, one can define
sequences as functions for they are helpful instnely of series. Series, we will see on
chapter two, can be used to represent many of ifierehtiable functions such as

polynomial, exponential, logarithmic etc. functionr& major advantage of the series
representation of functions is that it allows ut@luate integrals of the forfnsin vxdx

and [ e **dx and also approximate numbers suckeast and V2.

We can also define sequences as a map whose dooraists of all positive integers (it
may contain zero). Since the domain of a sequenkeawn to consist of positive integers,

we often omit and give the range, specifying tlienga,, in order of their indices.

Also the convergence, divergence, monotonocity &odindedness properties of a

sequence which helps us in the study of the upagpeh@pters will be dealt on.

Unit Objectives:

On the completion of this unit, students dtidne able to:

» understand the definition of a sequence;

» find limit of different sequences;

= realize convergence or divergence of a sequence;

» Understand boundedness of sequences;

» Understand the idea of monotonocity in case of seces;

= Understand the relation between convergence ancdeomess in case of

sequences.
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1.1.Definition and Notations of sequences

Overview:

In this section, we are going to deal with the ni@bn and notation of the sequence by

considering various examples.

Section Objectives:

At the end of this subtopic, students will be abte
» define a sequence;

* represent a sequence using the notation;

Sequences are, basically, countably many numbexsged in an order that may or may

not exhibit certain patterns. Here is the formdird&on of a sequence:

Definition 1. A sequence of real numbers is a funcif: N - R. A sequence can be written

as (1), f(2),f(3), .... Usually, we will denote such a sequence by thabsys { a; };il

where a; = f(j) .

For example, the sequende%, é% § is written as{]l} . Keep in mind that
j=1

despite the strange notation, a sequence can bghtof as an ordinary function. In many
cases that may not be the most expedient way todbthe situation. It is often easier to
simply look at a sequence as a 'list' of humbeas$ thay or may not exhibit a certain

pattern.

An ordered set of numbers such as ,a,,as,.. , a,,.. IS called a sequence and
usually designated by a, };—; . Each numbera, is called terms of the sequence. In

particular then™ term of the sequence is denoteddyy.
Remark 1:

1. If the numbers a,, a,, az,.. , a,,.. are real numbers, then the sequence is

called real sequence.
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2. Inthe sequence,,a;,az,.. , a,, .. ,
e a, is called the first term
* a, is called the second term.
In general,a,, is called then™ — term of the sequence.
3. Each term of a sequence has a successor and asltitres called an infinite
sequence.
4. n - does not have to start at 1. Sometimes it stans O and some positive integer
m.
5. The order of the elements (terms) of the sequerateers.
Example 1: The sequence 1, 2, 3... is different from the seceie2, 3, 1 ...

We may also define a sequence as a function

Definition 2: An infinite sequence (sequence) is a function, ayhose domain is the set pf
all integers greater than or equal to some integéusually O or 1). Iff is an integer greater
than or equal to some integer m affsh) = a, , then we express the sequence by writing its

range in any of the following ways:

i. f(m), flm + 1), f(m + 2), ...;
. Qm,am+1>Amez » o |
iii. {fn):n > m};

iv. {f(n)}o_,or{a, }5-m

Define a functionf(n) = a, forn > 1 Q)
Then the ordered set of numbess ,a,,as, ... , a,, .. determines a sequence. As a result
we normally suppress the symbéland just write {a, }n—; for the sequence defined in (1).

Similarly if f(n) = a, forn > m, then we would write{a,, }s_,, for the sequence.

Remark 2:

» We usually writea,, instead off(n) for the value of functions at the number
e The sequencf,,a,,as,.. , ap,..}is denoted by{a,} or{a,}s_, or

(an>cr>1o=1-

* Inthe sequenck,}n-m , nis called thendex and m is called the initial index.
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* The symbol used for the index is immaterial, {&,}5-n and {a;}i=,, are the
same sequence.

Example 2: List the first five terms of the sequence

a {iﬁ: }:;1 b. {6 )71 c. {1+ (025"}, d. {Zn—l}:_3

Solution: To find the terms of the sequence, we simply suibst the values n =
1,2,3, ... successively for tha™ - term of the sequence. Consequently the first tivens

are found by substituting the values=1,2,3,4 or n=5 in the n'" - term of the

sequencea, respectively.

Now we can easily comprehend that the initial inttex a and b are 1 whereas the initial
index for ¢ and d are different from 1. Hence weché first find then®™ — term where

the domain is the set of natural numbers.

a. Since the initial index of the sequence is 1, hehea™ — term of the sequence is
2n-1
5n+2

itself, i.e. a, =

. . . 1 3 5 7
The first five terms are given by, = L=, a3= o, A= o and a; =

% obtained by substitutingn = 1,2,3,4,5 respectively

Sequence nt — term ofa, The first five terms
b. {6 -1 a, =6 6,6,6,6,6
c.{1+(0.25)" }a-o ap 2,1.25,1.063,1.016,1.004
=1+ (0.25)"1
d {Zn—l}‘” 2n+3 5,3.5,3,2.75,2.6
. — _ an =
n-2Jp=3 n
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Remark 3:

Sometimes a sequence is given and we may be asKedlta defined formula, however
this is not always an easy task. Unless the giw®juence has some kind of pattern, it

won't be easy to find the defined formula.

Example 3: Find a formula for the general teay of the sequence

N

3 4+ 5
’25 ’125 "625 '
assuming that the pattern of the first few termstionies.

. . 2 4 5
Solution. We are given thata; ==, a,=— , az=— and a, =—
5 125 625

Notice that the numerator of these fractions stét 2 and increases by 1 as we go to the

next, that is,
The second term has numerator 3 i.e. 2+ 1

The third term has numerator 4 i.e. 3+1

In general, then'™™ — term has (n+1) numerator .

Clearly the denominators are powers of 5, hencath&erm has5™ denominator .

n+1
5o °

Thereforea, =
Caution.

* A sequence does not have to be defined by a serisithula.

Example 4: Given the sequence 3.14 | 3.141 , 3.1415, 3.143381592 , ... where we

cannot give, unless an agreement is reached,dgnsible formula.

e It is not as such trivial to get defined formulaeltgral term) for any given

sequence.
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Example 5: Here are some sequences that do not have a dieifghed formula

. {7,1,8,2,8,1,8,2,8,4,5,1}..

(i).  The Fibonacci sequengd, } is defined recursively by the conditions:
fi=1f=1f =f,_1 + f,_, for n =3 .As we can see each term is the
sum of the two preceding terms and cannot be es@das terms of only n.
The first few terms aré¢, 1, 2, 3, 5, 8, 13, 21, ..

Exercises 1.1

n

1. List the first six terms of the sequence defineddyy= pll Does the sequence

appear to have a limit? If so find it?
2. Find the first six terms of the sequence of numbts general term:
a) u, =2
b) up ="
c) u,=n?-1
3. Find a formula for the general term, of the sequence, assuming that the pattern
of the first few terms continues.
. -2 4 -8
(I). {1'?'6'7""}
. {2,712,17,..}
(iii). {5,1,5,1,5,1, ...}
V). 5332725756 "7 '
1.2 Convergence of a sequence

Overview

In this subsection we will learn the convergencd divergence of a sequence. We also
define what we it meant by a convergent sequemzktleen start to apply the definition in

solving different mathematical problems.
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Section Objectives:

On the completion of this lesson, students willgy.
» define convergent and divergent sequences.

» distinguish convergent and divergent sequences.

A sequence{a,}?_, mayhave the property that asincreases, then the® - term of the

sequencea, gets very close to some real number, Bay For instance consider the

o0

sequence{ﬁ} , then the sequence can be made very close tobgeohoosing n

n=1
sufficiently large. Whereas, some sequences mag tiees/property that asincreases, the
n'" - term of the sequence increases t00,4,£.gets to infinity. For instance consider the
sequencén};_, , then the sequence goes to infinitynagets large and large real number.

The following will give us the general definitionrfthe aforementioned once.

Definition 3(Convergent Sequence)A sequencda,}y—; is said to converge into a real
number L or a numbet. is the limit of the sequende,};-, if for everye > 0 , there

exists a positive integé¥ such that ilh > N , then|la, — L| < ¢.
In this case we writdm,_,,a, =L or a, - L asn—- .

If such a number L does not exist, the sequencadémit or diverges.

Definition 4(Divergence of a sequence)A sequencéa, }i-, is said to diverge to

(). oo if for every positive numbev , there is an positive integBrsuch that if
n > N, thena, > M, and write it aslim,_,a, = ©.
(if). —oo if for every positive numbeé¥l, there is a positive integdrsuch that if

n >N, thena, <M. We write it aslim,_,,,a, = —.
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Remark 4:

i. If lim,_,a, =L exists, we say thgh, };,—, converges (converges o). If such
a number L does not exist, we say that the sequéngg&_, diverges or that
lim,_,,a, does not exist.

ii.  The phrase ‘convergent sequence’ is used for eeseguvhose limit is finite. A
sequence with an infinite limit is said to diverdéere are, of course, divergent

sequences that do not have infinite limits.

Example 6: a, = (—1)" is divergent but does not have an infinite lithbugh its limit
does not exist yet.

iii. A sequence{a,} which converges to zero is calledll sequence
Theorem 1: The limit of a sequence, if it exists, is unique.

Proof. Let{a,} be a convergent sequence of real numbers suchithat,., a, = L and

lim,_,,a, =M.
To prove: L = M.
Let € > 0 be given.
Since lim,_,,a, = L, then 3N; suchthatn>N; = |a, —L| <%/, and
Since lim,_,, a, = M, then 3N, suchthatn >N, = |a, — M| <%/,
Let N = max{N{,N;,}
If n> N, then we have
la, — LI <%/, & |a, —M| <%/,

Now |L —M| = |(L —ay) + (a, — M)

< |(L—ap)l+ lay — M|

<ot r=¢
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= |[L-M|<e¢

Since ¢ is arbitrary, we conclude thgt. — M| = 0

= L-M=0

=L=M

Therefore, the limit of a sequence if it existsimque.

Example 7: Prove the convergence of the following sequengassing € — N definition.
a) limp_,~=0

Solution: Lete > 0 be given. We need to find a positive inte§esuch that if n > N,

la, — L] < €.

Givenanzﬁ and L=0.

=]

1
n

1 1
=< =
r1_N<8

Choose N > i )

If n=>N,then|a, — L|=|%— o|=

1
n

Then, by definition, we havdimn_m% =0.

. n?
b) hmn_m 1 =1

Solution: Considere > 0 . We need to find a positive integérsuch that ifn > N then

la, — L] < €.

. 2
Given a, = # and L=1.
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la, — L| = ELGEN] D |_L_ |_“‘Vn2+1
n T |WnZ+1 ~ |WnZ+1 VnZ+ 1 | vnZea
Rationalizing the numerator we obtain

| n?-(n%+1) | . -1 | - 1

WnZ+ 1) (m+vnZ+ DI~ IVnZ+ 1 (n+vnZ+ 1) T VnZ+ 1 (n+Vn2Z+ 1)

Observe that(VnZ+ 1) (n++vnZ+ 1) >n for n>1

Consequently we get the result,

|a Ll . n2 1| = VnZ . n |_ n-vn2+1
n - nZ+1 ~ |VnZ+1  VnZ+1 | vnZ+1
1 1 1
< ————< - < =< =&
VnZ+ 1 (n+vn2+ 1) n N

ChooseN > i )

If n> N, we have |a, — le‘ /nzn—jl— 1

By definition, we havelim,,_,, /nzn—jl =1.

<e€

0) limye()™ =0

Solution. Lete > 0 be given. We need to find a positive inteesuch that ifn > N,

la, — L] < €.

Given a, = (Z)n and L=0.

= L= - 0[=|O"| =" < O < e
Take the logarithm of both sidek (%)N <Ine

From which we obtainN. ln% < Ine
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Since ln% < 0, then dividing both sides by this value will altee sign and we get the

Ine
>
resultN > w3,

Ine
In3/,

ChooseN to be the smallest positive integers such that >

Then, we havdimn%o(%)rl =0.

d) lim,05 =5

Solution: Let € > 0 be given. We need to find a positive integésuch that if n > N,
la, — L] < €.

Given a, =5 and L=5.
la,— L|=|5—5/=0 < ¢ (True)

Which implies the limit value exists for all elemgin the domain. Since the domain is

positive integer, then chooge > 1 .

Thus for anyN > 1 we havelim,_,, 5 =5
e) limn_)ooni2 =0

Solution: Let € > 0 be given. We need to find a positive integésuch that if n > N,
la, — L] < €.

Given a, = é and L=0.

Now |a, — L| =

1 1 1
n2_ 0|=n2SN2 < E
ChooseN > Ve

Thus for N >+ we havelim, niz =0.
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Solution: Let € > 0 be given. We need to find a positive integésuch that if n > N

thenla, — L| < «.

. 2n-1
leenan=% and L=2.

3

-3

Now |a, — L| = 2 | = —(Zn_l)_z(n+1)| = | =2 <2 <
n+1 n+1 n+1 n+1 N+1
3
ChooseN > - 1
3 . 2n—1
Therefore, forN > -- 1, we havehmn_,oom =2

0) limn_)oo% =3

Solution: Let € > 0 be given. We need to find a positive intedésuch that if n > N
thenla, — L| < ¢.

. 3n+1
G|venan=nT and L=3.

3n+1
n

(3n+1)-3n
n

Now |a, — L| =

- 3=

ChooseN > ¢

ThusforN > &, we havelimn_,oo% =3.

Exercise 1.2

1. Determine whether the sequence converges or diseligie converges, find the

limit
2@ = 3+5n2
UM T pyn2?
n+1
b a, =
n 3n—1

¢ {0,1,0,0,1,0,0,0,1, ...}
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2. Each of the following sequencigs,} is convergent. Thus, in case determine a
value of N that is suitable for each of the follogwalues ofe : ¢ = 1, 0.1, 0.001,

0.0001.
_ 1 _ n _ (_1)Tl+1
a. ap =~ ba, = — Cap = —
1 2n
d a,= o a1, = 1

3. Assume thatim,_ a,, = 0, use the definition of limit to prove that

limy, e ay? = 0.
1.3. Convergence Properties of a Sequence

Overview

In this subtopic we are going to deal with the pmies that convergent sequences will

have and, verify using various examples.

Section Objectives:

On the completion of this subtopic, students welldble to:

+ identify the properties that convergent sequenegs.h

+ determine convergent sequences using the properties

Since sequences are functions we may add, sultnatiiply and divide sequences just as
we do functions.

Definition 5: Let {a,};>; and {b,};~, are convergent sequences and c a scalar. Then

* The sum{a, + by}n=
* Any scalar multiple{ca, }o-;
* The producf{a,b,}i=,
« The quotienl{z—“} provided lim,_ b, # 0 are all convergent with the
n‘n=1
properties:

. limpLe(ay, £ by) =limyL e ap & limy_e by
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i.  limp,ec.a, =c lim a,

n—oo
ii.  lim,,eay.by, =lim,, e a,.lim,, by

. . a limpse0a . .
iv.  limpe— = —=22 provided lim,_, b, # 0
bn limp,e0 b

v. lim,,,c=c where cis a constant.
vi.  lim,ea,? = (lim,, . a,)? provided p>0 anda, > 0.
vii.  lim,_,c, €3 = eliMn-ean

vii.  If a, <b,,thenlim,_,a, < lim,_4 by

Note that this statement is no longer true forcsinequalities. In other words, there are

convergent sequences wita, < b, for all n, but strict inequality is no longer true for
their limits. For instance, considera, =n—i1 and b, =% , Clearly a, <b, but

lim,_qa, = lim,_, b, = 0.

Example 8: Find the limit of the following using the propesgie

N=% 3n+5

Solution: Dividing each term by the highest powerwof we get

1

lim 2271 _ lim —1I
n—oo 3n+5 n—oo 3+E

|~

. 1 . .
limp, 0 2 - limp 002 - limpeo

_ S 2-0 _ 2
liMpoeo 3+ liMpoee 3 + limp_eos 3+0 3
. (n+1)M
b) hmn—mow
.. (m+1)™ . (m+D)™ . (n+1)" 1
Solution: limy_e 5= = limy e ——— = limy oo ——.~

. n+l.p 1. 1
lim,,_, (T)n' lim,_, e -

. Iyn 1; 1 _
llm(1+n) .llmn_,oorl =e0=0

n—-oo
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. n?
C) hmn—mo(n - m)

Solution: i n?\ li n?+n-n? — i n
olution: IMp L0 (N — i) My, Y = 1Imy_, i1

_ limp e 1 _ 1 -1

limp eo 1+limp oo = 140

o 1
= lim,_ e I

+
=AE

Note: There is one more simple but useful theorem that l;e used to find a limit if
comparable limits are known. The theorem statesitl@asequence is pinched in between
two convergent sequences that converge to the 8amtethen the sequence in between

must also converge to the same limit.
Sandwich (Squeezing) theorem X5iven three sequencés, } , {b,} and {c,} such that

. a, < b, < ¢, foreveryn, and

i, limy,ea, =A = lim,_, Cy
Then lim,,, b, =A

Proof: Let € > 0 be given. Sincdim,_,, a, = A = lim,_,,, ¢, , then by definition there

exists positive integen$; andN, such that

la, —Al <e for n=>N; 1) (
and
lc, —Al <& for n=N, ) (2

Let N=max{N;, N, }, thenfrom (1) and (2) we have

—e<a,—A<c¢ n=>N 3)

and
—e<cp—A<ce n>N (4)
From (3) we obtain, A—e < a, <A+ ¢ (5)
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and from (4) we get A—e <c, <A+ ¢ (6)
Combining (5) and (6) we get,

A-e<a, <b, <cy, <A4+¢ n=N
From this we havdb, — A| < ¢ for everyn > N.
Then, by definition we havéim,_,, b, = A.

Example 9: Find the limits of the following.

1+sinn

a) lim,_q
Solution. We know that—1 < sinn < 1
Adding 1 both sides we obtain the result,
0 < 1+sinn < 2

Then dividing both sides hy, we get

1+sinn

SN

n
Taking the limit of both sides, we géitm, _,,,0 = 0 = limn_mg.

1+sinn

= 0.

Thus, by sandwich theorelim,,_, ,

. sin®n
b) limy g, 22

Solution: We know that0 < sin?n < 1. Then dividing both sides by , we get the

result,

Taking the limit of both sides we géim, ,,,0 = 0 = limn_)oo%.
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sin?n

Thus, from sandwich theorelim,,_, ., — = 0.

c) limy,ovn+1—+n

Solution: Let us first rationalize the numerator

_ _ (Vn#1-vn).(Vn+1+vn)
it 1-vn =" R

_ (n+1)-n

T Vnti+vn

1
T Vn+i+vn

But we know thatVn < vn+1+4++vn < 2Vn+1

1 1 1

. 1 . 1
< < — =0 = —
= 2vyn+¥1 — +Vn+i+vn — +Vn and hmn_m 2vn+1 0 hmn_)‘”\/ﬁ

By squeezing theoremim,,_,, m =0

d) limp_e, ()"
Solution: We know that0 < (22:)‘1 < (%)n andlim,,, 0= 0= limn_,w(%)n.
By sandwich theorem, we concludl'enn_)oo(z:i)“ =0.

Techniques for computing limits of a sequence

Theorem 3:Letf be a continuous function, thém,,_,., f(a,) = f(lima,).
n—oco

Idea of proof: By definition of continuity whenx — x, then f(x) — f(x,).

Now lima, = A meansa, - A asn — oo. Thus f(a,) = f(A) whenn — oo

n—»oo

That is, lim,_,,, f(a,) = f(lima,).
n—oo
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nm
2n+ 1)

Example 10: Find thelim,,_,, sin(
Solution: limy, e sin(;—=) = sin(limy e =) = sin(limpy e ﬁ) = sin;) = 1.

f(n)

Theorem 4 (L’Hospital’s rule). Supposea, = f(n) and b, = g(n). If limnawﬁ is
o 0 . fn) . f'(n)
of the form — or -, then limy o 225 = liMpe 55

Example 11:Show that
lim, . (1 + E)n — X
Solution: We know that(1 + E)n _ NI+

Then,lim,_,,, (1 + E)n = limye e In((1+)

Then,

In((1+3)
n X i X ; n
lim (1 + —) = lim "N+ = dmnin(@+y) _ JJim—p

n—.oo n n—oo

is 2 form.
0
Then by L'Hospital’s rule,
limp e (1 +2)" = e*.

Exercise 1.3

1. Leta;, =k, a; =f(k) =f(a)), az=f(az) = f(f (k) , ..., ans1 = f(an)
where f is continuous function . Ifim,,_,, a,, = L , then show thatf(L) = L .

2. Using the definition ofe — N show that limn%$ =2.

5+sinn

3. Find the limit of lim,_,
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1.4. Bounded Monotone Sequences
Overview:

In this subsection we are going to deal with bodndaonotone or both bounded and
monotone sequences, and comprehend the need ofrsdetermining whether or not a

particular sequence is convergent or divergentawitiknowing where it goes.

Section objectives

At the end of this lesson, students are expected to
» define bounded sequence;
» define monotonic sequence;

» determine if a abounded monotonic sequence is cgert

Definition 6: A sequencela,}p-,, is boundedif there is a numberM, M > 0 such that

la,| < M for everyn > m .Otherwise, we say that the sequence is unbounded.

For instance the sequen{:ﬁa} and {1}, are bounded but the sequenéek,-, and
n=1

{n?}_, are unbounded.

Remark 5: A sequence{a,};, is said to be

(). Bounded above: if there exists a numibéy M > 0 such thata, <M for all

n=1.

(i). Bounded below: if there exists a numkyddr, M > 0 such thata, > M for all

n=>1.
(ii). Bounded: if it is both above and below boundedthere existsM, M > 0 such
that |a,| <M forall n > 1.

Example 12:Determine whether the following sequences are téedor unbounded.

a {1+§}:1

Solution: Here we can see th+1 + §| < 3 for everyn > 1. Thus, it is bounded.
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b. {1,2,3,4,..}

Solution: The defined formula for the sequencé is},_,. Clearlyyn > 1 forall n =

1,2,3,.... Therefore[ n };—, is bounded below.

But it is not bounded above as there isvhasuch that the conditiam < M for every

n > 1 is satisfied. Therefore, it is unbounded.

c. {e'n };

Solution: |e1/n

a {3,

Solution: |§| < 1 for everyn > 1 which implies bounded.

<e foreveryn >1.Itis bounded.

The following theorem shows important criteria tbe boundedness and divergence of

sequences.

Theorem 5:

i. If {a,}a=; converges, thefa, };-, is bounded.

i. If {a,}az, isunbounded, thefa, }o-; diverges.
Proof: (a). Supposéim,_, a, = L, where L is a real number.

Let € > 0 be given. Then by definition, there is a natutahber N such thatifn > N
thenla, — L| < €.

Choosee =1, then forn = N we havela, — L| < 1.
Therefore ifn = N, |a,| = |la, — L+ L|.
By triangular inequality we have,

la, —L+L| < |a, — L| +[L]
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<1+]|L] (Sincela, — L] <1)
Let M =max{|a;|, |a;l, lagl, ...,lan—1], 1+ L]}
Then |a,| <M foralln=1,2,3,..
= {a, }y=; is bounded.

(b). We proof the theorem by contradiction, that igpmse the sequence is convergent,
then from (a), the sequence is bounded. This igr@diction to the fact that the sequence is

unbounded. Hence it must be divergent.

Caution: Convergence implies boundedness but boundedness do¢ imply

convergence, i.e., bounded sequence need not bergent.

Example 13:{ (—1)" };, is bounded but not convergent.

Definition 7: A sequenc¢ a, };=, is said to be

i.  Monotonically increasing ifa, < a,,; foralln>1.
ii.  Strictly increasing ifa, < a,;; foralln>1.
iii.  Monotonically decreasing ifa, = a,,; foralln>1

Ilv.  Strictly decreasing ifa, > a,;; foralln>1

Remark 6:

i.  Anincreasing (decreasing)sequence is sometimbesicad non-decreasing(non-
increasing) sequence.
ii. A sequence which is either increasing or decredsinglledmonotonic sequence.

In other words, if every next member of a sequdasdarger than the previous one, the
sequence is growing or monotone increasing. If gt element is smaller than each
previous one, the sequence is decreasing. Whiectimdition is easy to understand, there

are equivalent conditions that are often easiehgezk:
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How to show a given sequence is monotone
Method I: First find a,,; ,then we say that the sequence is

* Monotone increasing if
0 apt1 = an
O an+1 - an 2 0

o I >1 ifa, >0

an
* Monotone decreasing if
0 apy; =ap
0 a4 —a, <0

o I <1 ifa, >0

an

Method II. Since sequences are functions, then what is apjgi¢ar functions is also true
for sequences. Therefore, using the first derieatest we can determine whether or not a

given sequence is convergent or divergent.

Step I. Letf(n) = a,, .
Step Il. Find the first derivative of the fifions, i.e.,f'(x).
Step llI. If
(). f'(x)>0forallx or f'(x) > 0 for all x andf’(x) = 0 for finitely many
values ofx, then the sequence is increasing.
(ih. f'(x) <0forallxorf'(x) < 0 for allx andf’(x) = 0 for finitely many

values ofx, then the sequence is decreasing.

Example 14:Determine whether or not the following sequences@onotonic.
1 [o0]
a) {1+1‘12}n=1

. 1 . .
Solution: We havea, = - From this we obtaina,,,; =

1 _ 1
1+(n+1)2  n2+2n+2
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4 — a _ 1 1 _ n?+2n+2-n?-1 2n+1 >0 for all
n n+1 ™ g 4n2 nZ+2n+2  (1+n2)(n2 +2n+2)  (1+n2)(n2 +2n+2)
n=>1.
. 1 )® . .
Hence, by definition, the sequer{eﬁﬁ} is decreasing.
n=1
(o]
b {5z
2n+1 n=1

. . . +1 +1

Solution: Givena, = ——, then we obtain,,; = — = =
2n+1 2(n+1)+1 2n+3
_n n+l1 _ (2n?+43n)—-(2n%+3n+1) -1
an T 1 T 0T Tones (2n+1)(2n+3) T (2n+1)(2n+3) <0 forall
n >1.
. e n © . . .
Thus, by definition, the sequenﬁm} is increasing sequence.
n=1
1 [ee]

o 3%},

I 1 1
Solution:- a, = e
=2 - £ _ *r__ 1

n+l ™ n4 (n+1)2 ~ n+1 n2+2n+1

1 1 1 1 n?-n-1

Now ap = anyy = (; _E) B (E_ n2+2n+1) © (n+1)2.n2 >0 whenn > 1.

Therefore{a, } is decreasing sequence.
Bounded Monotonic sequence

Given asequence it is not always simple to determine wdrete sequence converges or
diverges. For some sequences it may be sufficentwkonly the convergence. The

following theorem will help us to know only convergce of a sequence.

Monotone convergence theorem 6A bounded sequenca, };-; thatis either

increasing or decreasing converges. That is, ademimonotonic sequence converges.
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Example 15:

1 2 3

a. Leta, =1+
1x1! 2x2! 3x3!

+ ..+ L _forn > 1. Then show that
nxn!

{a,}i2, converges.

Solution: To show{a,};~, is convergent, we need to show if the conditimnghe

theorem are satisfied.

. e . 1 .
i.  Monotonocity: Sincea,,; = a, + DD > a, , then, by definition, the

sequence is increasing.

ii. Boundedness :

1 2 3 1
1x1! 2x2! 3x3! " nxn!

0<a,=1+

3

<1+ -+ 2+
1! 2! 3x3!

b+ S
n!
< e

Thus, the sequende, };, is bounded

Therefore, by monotone convergence theorem, theeseg convergence.
b. Let a; =1 and definea,,; = % for n > 1, then show that the sequence

{a,} is convergent and find its limit.

Solution: - Before we decide the convergence or divergencthefgiven sequence, we
have to first check whether or not the conditioos the theorem are satisfied, that is,
monotonocity and boundedness.

Let f(n) = a,,,, then the function becomd§x) = % for x > 1.
Using derivative test:f’(x) = S2 76U T _ 36 5  This tells us the
(7+x)2 (7+x)2

sequence is monotonically increasing.
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To show boundedness:

1+x
7+ X

Since 1XX <1fora||x,weobtain6( ) <6, Vx =>0.
7+X

Now sincea, =0 forall n.

f(a,) = a,41 < 6 forall n. Consequently, we haveé < a,,; <6.
Therefore, the sequenés, };~-; is bounded.

Thus, by monotonic convergence theorem, the seguentvergese.

To find the limit point for the sequence, assuipe— L asn — oo, that is

lim,_,eoape; =L

6(1+ap)
Now a =
n+1 7+ ap

Taking the limit of both sides, we obtain

. . 6(1+a 6(1+L
lim, e apy; = limp e g D - =80

+ ap 7+ L

= L(7+L)=6(1+ L)

= 2+7L=6L+6 = 12+L-6=0
From thiswe getL =2 or L =—-3.Sincea, >0 foralln>1,thenL =2.

c. Consider the sequenéa,}, wherea; = V2 anda,,, = /2 + a, for
n > 1 .Then show that
i. {ap}pz; isbounded sequence.
ii. {ap}a=; iS monotonic sequence.

iii.  Find the limit of the sequence.
Solution:-
i. BoundednessUsing mathematical inductiora; = V2 < 2 (true).

Assumea, < 2
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Then we need to showa,,; < 2.
We know that a, < 2 (assumption)
Adding both sides2, weget 2 +a, < 2+2=4

Taking the square root of both sides
= J2+a, < V4 =2 = a,=+2+a, < 2
Therefore, by the principle of mathematical indotithe sequende,} is bounded.

ii. Monotonocity : Again by employing mathematical inductiom, = V2 < a, =

J2+a; =V2++2 (true).
Assumea, < ap;q-
We need to shova,,; < apys -

Add both sides 2 for the inequality on the assuomptive geta, + 2 < ap;q + 2.

Take the square root of both sides, we obtgl@d + a, < /2 +a,;; Which gives us

ane1 = y2+a, < 2+ap =ans:-

Thus, we conclude that,, < a,,; for all n € N. Therefore, the sequengs, } is

increasing.
iii. To find its limit:

By monotone convergence theorem, we know that adeadimonotonic sequence

converges, say the sequenieg };-, converges td .

Sincelim,_ ap4; = limy, e a,

= limp,paps = limyLe+/ 2+ a,

= limy e any =+/2 + limyeay
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= [=V2+1

= 1’=2+1 =1?°-1-2=0 =1=2 or l=-1
Sincea, =0forall n=1,2,3,...

Thus [ = 2.

Exercise 1.4

1. Define the sequende,} by a; =1, a,,; = 2a, +2 forn > 1 .Assuming that

{a,} is convergent, find its limit. Is the sequencevesgent ?
2. Define the sequende,} by a; =1, ap4q = %an +3az—2 forn > 1 .Assuming

that{a,} is convergent, find its limit.

3. Show that the sequence,

a) a, = isincreasing

1 1 . .
b) a, = ~—— s decreasing.

2

6(1+an)
1+an,

4. Let a; =1 andforn > 1 define a,,, = , show thafa, } is convergent

and find its limit.

By Kibrom G. and Abrha L 27 AKU



Applied Mathematics Il

Unit Summary:

1. An ordered set of numbers suchgsa, ,a;,... , a,, ... is called a sequence and
usually designated by a, }n-; . Each numbemn, is called terms of the sequence. In

particular then™ term of the sequence is denoted &y

2. An infinite sequence (sequence) is a functiay, f5, whose domain is the set of all
integers greater than or equal to some integersaefly O or 1). Iff is an integer greater
than or equal to some integer m affd) = a, , then we express the sequence by writing

its range in any of the following ways:

f(m), fm+ 1), f{m+2),... ; am,am+1,amez, - ;1fM):n = m}; {f(n) }3-, Or

{ dn Cr)lo=m

3. a).Let{a,}5-; be a sequence. A numbér is the limit of {a,};-, or the sequence
{ay}a-, converges td. if for everye > 0 , there exists a positive integhrsuch that if

n > N, then|a, — L| < ¢ .In this case we writhkm,,,a, =L or a, - L asn—- w.
If such a number L does not exist, the sequensenbdimit or diverges.
b). A sequencéa,};-, is said to diverge to

(). oo if for every positive numbevl , there is an positive integBrsuch that if
n > N, thena, > M, and write it aslim,_,a, = © .
(i). —oo if for every positive numbe¥vl, there is a positive integdirsuch that if

n >N, thena, <M. We write it aslim,,_,,a, = —.

4. If lim,_a, = L exists, we say thdh,};-, converges (converges ). If such a
number L does not exist, we say that the sequéag¥,_, diverges or thatim,_,,, a,

does not exist.
5. Let {a,};2,; and {b,};=; are convergent sequences and c a scalar. Then

the sum{a, + b,}o=; ; Any scalar multipl€ca,};=,; The producfa,b,}n-;
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and the quotier{tba—“} provided lim,_, b, # 0 are all convergent.

n=1
6. Sandwich (Squeezing) theorentiven three sequencda,}, {b,} and {c,} such
that

i.a, < b, < ¢, foreveryn, and

il. lim,,,a, =A = lim,,Cp .
Then lim,_, b, = A

7. A sequencéda, };-, is boundedf there is a numbeM, M > 0 such that|a,| < M for

everyn > m .Otherwise, we say that the sequence is unbounded.
8. A sequencega,}o-, is said to be

(). Bounded above: if there exists a numb&;r M > 0 such thata, <M
forall n>1.
(i).  Bounded below: if there exists a numidr, M > 0 such thata, > M
forall n > 1.
(ii).  Bounded: if it is both above and below boundedthere existsM, M > 0

such that |a,|] <M forall n> 1.

9. Convergence implies boundedness but boundedizess not imply convergence, i.e.,

bounded sequence need not be convergent.

Example: { (—1)" };%, is bounded but not convergent.
12) Let{ a, }3-,, be given sequence. Then, };-,, is said to be
i. Monotonic increasing ifa, < a,;; foralln>1.
iil. Strictly increasing ifa, < a,4; foralln>1.
iii. Monotonic decreasing ifa, > a,,; forall n> 1.
iv. Strictly decreasing ifa, > a,4; forall n> 1.
14) Monotone convergence theorem:A boundedsequencefa, }i,, thatis either
increasing or decreasingconverges. That is, a bounded monotonic sequence

converges.
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Miscellaneous Exercises

1. Find a formula for the general term,, of the sequence, assuming that the pattern of the

first few terms continues.
-2 4 -8
a. {1,?,;,;,...} b.{5,10,15,20, ...} c{7,2,7,2,7,2, ..}
2. Using the definition of sequenee{ N), verify the following

. 2n—1 . 1 . .
a. lzmn_)oo"T =2 b.limy,,—=0 c.lim, o c=c ,wherecisa

constant.

3. Determine whether the sequence converges orggiself it converges, find the limit.

a = —— ba, = - c{3,1,3,3,13331,..}
()" _2n?+41 _ . n
d.an =" Can = fap=n-_—47
4. a. Iflim,_a, =L,thenwhatis the limit ofim,,_,., a,,;; ? why ?

b. Using (a), find the limit of the segue {\/? V2v2, ,/2\/2\/7, } 2.

5. Prove that the sequente, };-, converges to zero if and only if the sequefieg, |}~

converges to zero.

6. Prove that if the sequenge, };—, converges to a numbet , then the sequence
{la,|}m=1 converges to a numbdd| . Is the converse true? Give an example of a
divergent sequencéa, };-—, such that the sequend¢a,|},-, is convergent.

7. Prove that the following are null sequences

. n)® . sinn)® . (cM® . '
i. {—n} il { } iii. {—} where c is any fixed real
n"In=1 n Jn=1 nlin=1

number.
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8. Determine whether the sequence is increasiegreadsing or not monotonic. Is the
sequence bounded ?

1
2n+3

2n-3 nm 1
b. a, = C.anzcos(—) da,=n+-
3n+4 2 n

a.a, =

9. Suppose thafa,,} is decreasing sequence and all its terms lie betnthe numbers 6

and 9. Does the sequence have a limit? If so, wduiatyou say about the value of the limit?

10. Show that the sequence defineddy=1, a,,; =3 — ai is increasing and

n

a, < 3 for all n. Deduce that{a,} is convergent and find its limit .

11. Show that the sequence definedahy= 2, a,,; =3 — ai satisfied) < a,, < 2 and

n

is decreasing. Deduce that the sequence is conveagel find its limit.

1

12. A sequence is defined recursively sy =1, a,,; =1+ —

then

a. Find the first five terms of the sequeriag}.

b. Show thafa,} is convergent and deduce théin,, . a,, = V2 .

c. Find 1+ 11

25—

Vi ()"
14. Let{a,}2., be the sequencd2 ,(v2) ", (V2) , .. where in general
An+1 = (\/E)an , then

a. Show thafa,},-, is bounded sequence.
b. Show thafa,}, -, is increasing sequence.

c. Show thafa,};=,; converges and find the limit.

15. Suppose thad < a, < a,,; < M for each natural numben . Then, prove that
i. {a}o=;  converges
ii. {—a,};y-, converges

iii. {a,*}x-, converges for each natural number k
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16. Define the sequenée,} by a;, =1, a,. = 2?2 forn > 1 Assuming thafa,, } is

an+3

convergent, find its limit.

17. Define the sequenée,} by a; =1, a1 = gan + 30% forn > 1 .Assuming that

{a,} is convergent, find its limit.

18. If a, = 1:1)—:1 , then find a positive integeV such that a,,,; < a, whenn > N.
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Chapter two

Infinite series

Introduction

This section considers a problem of adding togetherterms of a sequence. Of course,
this is a problem only if more than a finite numbéterms of a sequence are non zero. In
this case we must decide, what it meant to addtitegean infinite number of nonzero
numbers.
The question of dividing a line segment into irn@simal parts has stimulated the
imaginations of philosophers for a very long tirimea corruption of paradox introduced by
Zeno of Elea (in the fifth century B.C.) a dimemsiless frog sits on the end of a one
dimensional log of unit length. The frog jumps kalf/, and then halfway and infinitum.
The question is whether the frog ever reaches tther @nd. Mathematically, an unending
sum,
%+i+%+...+2in+...

is suggested. “Common sense” tells us the sum apgsbach one even though that value
is never attained. We can form partial sums,

S1=, Sp=z47, Ss=gHptz . Szttt
and then examine the limit.
In this chapter, consideration of such sums lausitiseon the road to the theory of infinite
series; which are sums that involve infinitely maayms of the sequence. Infinite series
play a fundamental role in both mathematics andneg- they are used, for example, to
approximate trigonometric functions and logarithnfiimctions, to solve a differential
equations, to evaluate difficult integrals, to t¢eeanew functions, and to construct
mathematical models of physical laws. Since itnigpassible to add up infinitely many
numbers directly, our first goal will be to defiegactly what we mean by the sum of an
infinite series. However, unlike finite sums, itra out that not all infinite series actually
have a sum, so we will need to develop tool foereaining which infinite series have sum
and which do not. Once the basic ideas have beeglaped we will begin to apply our
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work; we will show how infinite series are usedetaluate such quantities sis 17° and
In 5, how they are used to create functions, and finaihd how they are used to model

physical laws.

Unit Objectives:

On the completion of this unit, you should be &ble
» Understand the definition of an infinite series;
» Understand the idea of partial sum in series
» Define convergence or divergence of a series;
» determine whether a given series is convergenivergent;
= Distinguish the different types of series ;
= Define alternating series;
= Determine the convergence of alternating series;
» Understand the different types convergence testssefies;
» Understand the idea of absolute and conditionaveaence;
» Understand the different types of convergent tiestabsolute convergent series;

» realize the need for the use of non negative segu@convergent tests;

2.1. Definition and examples of infinite series
Overview:

So far we have introduced a sequence, and in tiisestion, we are going to add these
elements of the sequence so as to obtain an mfseities. Moreover, the partial sums of a
sequence and the partial sums of a series whi@s lusl in determining the convergence of
a series will be dealt on.

Section Objectives:

On the completion of this subtopic, students welldble to:
= define an infinite series;

» determine the partial sums of a sequence; pattrakf a series;
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Definition 1: Let { a, }o=; be a sequence of real numbers, then the expreasien
a, + az+ ..+ a, + .. which is denoted by);;2, a; , thatis, }.;2;a; =a; + a, +

az + ..+ a, + ... is called an infinite series.

Remark 1: Consider the serie§;2,a; =a; + a, + a; + ..+ a, + ... , then
i. a,is called then™ - term of the series and, = S, — S,_; .
i. LetS,=YB_,ax=a; + a, + az + .. + a, ,thensS, is called thex" -
partial sum of the series.

i.  {S, )}, whereS, is then'™ — partial sum is called the sequence of partiaissu

Definition 2: A series is the sum of the terms of the sequerehws infinite in
numberi.ea; + a, + a3 + .. + a, + -+ is called an infinite series and is usually

denoted by';2,a, or Y a, Or Sy .

Sums of an infinite series

To define the sum of an infinite series, we reqtheedefinition of partial sums

Definition 3: Let Y..,a, be an infinite series. Let, =a; + a, + a; + ... +
ap thens, = YI_,a, is called then" — partial sum of the series andsS, }%.,

where S, is then™ — partial sum is called the sequence of partiaissaf the series.

Example 1:
a. For each positive integer n, assuage= 1 , then find

I.  The series?

ii. Then™ — partial sum of the series?

iii.  The sequence of partial sums?
Solution:The general term of the sequereg, }o-, is given bya, = 1, and from this
we obtain the first few terms of the sequenceasa; =1,a,=1,a3=1,...

I The seriesisgiven by, _;a, = a; + a, + a3 + ... + ap + -
=14+1+1+ or =Y2,1
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ii. Thent" — partial sum of the series is given by
Sy=Yh_jax=a; + a, + az + .. + a,

=1+1+14+--+1 =nXx1=n

n—times

Hence s, =n
iii. The sequence of partial sums is given{8;, };2; ={n};X; =
{1,2,3,4,..} or {S, }p=1 ={s1, Sy, S3, S4, ...} Where s; = a;,
S, = a;+ a,, s3= a;+a,+az, s, = a; +a+az+ a,
Therefore,{ S, }o=1 = {s1, S2, S3, S4, ..} = {1,2,3,4, ...}

b. Let a, = ﬁ , then find

i. The series?
i. Then™ — partial sum of the series?

iii. The sequence of partial sums?

. . 1 . .
Solution: given then'™® —term of the sequence,, = el then from this we obtain
a=2,a, == ,a;=—, a3 =—

172792767 9837 127 T4 7T 50

I. The series is given by
Yocqdp=2a; + a; + az + ..+ a, + -
101, 1 1 . 1
=rtetntnt O Mg
ii. The nt? partial sum of the series is given by
Sh=2ma,=a; + a, + az + ... + a,

1 —on 1
n(n+1) Or s, = 1=143i41)

2 6 12 20

ii. The sequence of partial sums is given{8, }o=1 = {S1, S2, S3, S4 - }

2

1 11
Wheres; = a; =2, s, = aj + ap = o +-=17,

1,1, 1 3 1,1, 1,1 3
S3 = a; +ax+ a3 :E+E+E:Z’ S4 = a; taxtaz+ a4=5+g+5+5=5
o 123 3
Therefore { Sy iy = {s1, 82, 83, 80,3 = 55,5750+

Note- {S, }oz; # {a, Jazq , the first is to mean the sequence of partialssafithe

series while the later is a sequence.
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Exercise2.1:

1. For each positive integet, assumer,, = 2, then
a. Find the series
b. Then!" partial sum of the series
c. The sequence of partial sums

2. If the nt" partial sum of the series is given by, = Z—: then find the

a. Third term of the sequence i®&.
b. n'" Term of the sequence i,
C. Xn=10n
3. Ifthe n'" partial sum of the series is given By = n? + 3n , then find the

a. Third term b. fifth term c. n* term of the sequence

4. Given the series, then find thé" partial sum of the series i.8, and the sum of

the series
o 1 o 1 o _2 o _ 2
a-ano n2+3n+2 b. ano (n+1)(n+2) C'anz n2-1 d'znzl n2+4n+3
eq, = > 2
In =051 nez
2.2. Convergence and divergence of a series
Overview:

In this subsection, we are going to deal with thlevergence and divergence of a series. In

line with, we discuss about geometric series aett tftonvergence.

Section Objective

After completing this subtopic, students will bdeato:
= define the convergence and divergence of series;
= determine convergent and divergent series;

= determine geometric series;
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Definition 4:

+ Convergent series An infinite series) -, a, with sequence of partial suns

{Snh }i2, is said to be convergent if and only if the seweaeof partial sumsg
{Sh }ix, converges, i.e., if lim,,.s, exists, then we say that the ser|es
Yneq A, IS a convergent series and we write it Jg8.; a, = lim,_ Sy, -

+ Divergent series A seriesy,o a, is said to be divergent if it is not convergept,

i.e., the serie¥;;~; a, is divergent if and only if the sequence of parsiams

{ Sh }2x, is divergent.

Theorem 1:If the seriesy -, a, converges, thetim,_,a, =0 .
Proof: Suppose that the serigg-,a, converges tolL, then we need to show that
lim,,.,a, = 0.

The fact thata, = s, — s,_; and taking limit of both sides we obtain,

lim, o a, =lim, sy, — limy_, 5,1 =L—L=0.
Example 2:

Prove that the following series are convergentfartithe limit of the series

1
a. Yooq

n(n+1)

; ; 1 1 1
Solution: Given a,, = TRl

_ yn _ yn 1 1
NOW s, = Xg—gak = Xk=1 (;— m)

S 9 (D4 (D G- P (- D
G-

Then,

o 1 =i _1N_1_0=
Z“=1n(n+1)_hm“‘>°° Sp = lim_,, (1 r1+1) 1-0=1.
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Therefore, the serie¥ -,

( 1 converges and it converges to the sum 1.

b. Y

n(n+3)

. 3 1 1
Solution: We havea, = ——= - — —.
n(n+3) n n+3

_ on _on (1 1
Now s, = Xk-1ak = k=1 (K_ m)

(- (- (D¢ G- PG D G- )+

Then,
el T

n(n+3) = limp,e S, = limn_,oo( ——) =

n
6
Therefore the seriei;‘f;ln(n—m converges and it converges to the s}g

C. Xhe1i 55—
2 2 1 1

Solution: Itis given that,, = ————= GTheT = e

1
= k=13 = Xi= 1(k+1 m)

R TS N

n2+4n+3

T . 5
Zn 1 llnlln—wo Sp = hmn—>00(g_

—) =

. 2 .
Therefore, the serleﬁﬁzlm converges and it converges to the sglm

n2+4n+3 n+3

Divergence tes{The n'" — term test). If lim,_, a, does not exist otim,_,., a, # 0,
then the serieg’ ;- a, is divergent.
Remark 2: If Y.;_;a, is convergent series, théim,_,., a, = 0. The converse need not

be always true, i.elim,_ ,a, =0 does not imply the series,-,a, converges. If
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lim,,,a, =0, then we cannot drawn any conclusion about thevergence or

divergence of the serig¥™, a, .

Example 3: Consider the serieileﬁ . Here we havea,, =% and alsolim,,_,, a, =
limn_)w% = 0, however, the serieE;’f:l% is a divergent.
Examples Use divergence test to test the divergence ofali@wving series:

a. Yp=(=D"
Solution: given a, = (—1)", then find its limit, i.e.lim,,_,,, a, = lim,_,,(—1)" does not
exist; by then™ term divergence test (divergence t&3f.,(—1)™ diverges.

b. X1 cos?)
Solution: given a, = cos(%) andlimy,_,, ap = lim,_,4 cos(%) = cos(lim,_ %) =
cos(0)=1=+0.

By then™ term divergence test> , cos(%) diverges.
. 1
C. Zn:l(l - Z)n

Solution: given a, = (1 — %)“ .

1 1
1Moo @n = liMpooe (1 = 5)" = (liMpoe (1 + )™ 2 =e2 £ 0.

By then™ term divergence test, the serig&_ (1 — %)“ diverges.

o 3n?-n+4
d. Xn=s 2n2 + 1

3nZ-n+4 3n?-n+4 3

Solution: given a, = S andlim,_,,, a, = hmn—mom =-%#0.
. . 3n%2-n+4 .
Thus, by the™ term divergence test, the serig§.; ~——— diverges.

Geometric Series
When a sequence has a constant ratio between sivecésrms it is called a geometric
sequence and the constant is called the commandatioted by r.
Theorem 2: Suppose that a,# 0 and r are real numbers, then the geometric sisries
given by:
a; +ar+agri+a,rd++ - = ¥ art?

and,
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. 1
a. Yo ,ar™ converges iflr] <1 andS, = —

b. ¥ ,ar™ diverges if|r| > 1

Example 4: Test the convergence and divergence of the follgweometric series
a 1-242_%8.4 ..
3 9 27

. . . . . . 2 . 2
Solution: the series is a geometric series with= 1 andr = -3 and sincelr| = <1,

then the geometric series converges and its sgimes by: S, =

I
N
I

=
r 1=

b S (3)

Solution: since the common ratifr| = g > 1, then the geometric series diverges.

Definition 5: (Harmonic Series) The seriEﬁ":l% is called harmonic series and it

diverges.

Example 5:Change the following into its equivalent fractiasing geometric series
a. 1+044+0.16 + 0.064 + --
Solution: 1+ 0.4 4+ 0.16 + 0.064 + ---

_ A AN A3y Aa g
=1+ 10 + (10) + (10) + (10) +
The series is a geometric series with= % < 1, hence converges and it converges to
1 5
Swzz;?:lan:::—:g_

b. 0.123

23 23 23
+ +
1000 100,000 10,000,000

Solution: 0.123 = 0.1 + 0.023 = % +

1 23 23 23 1
=—+t—=+—=+—=+= =+
10 10 10 10 10

=0.1+2—33<;1>= 01+ =
10 1 990

23

103(1+L+i+i

102 ° 10*  10°

100
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Exercise 2.2

1. Given the serie¥,,, , then

n(n-1)
(). Find S5,S¢ and S,?
(i).  Ifitis convergent, find its sum ?
2. Find the sums of the following series

1
n2+3n+2

2

a. Y )
Zn—o n2+4n+1

2 n
b. Yne2—— C. Xn=1 d. Yoo In—

3. Ifthen® partial sum of the serie; a, is s, = Z—: , then finda,, and

Yn=10n ?
I S TP ind i
4. Prove that1><3 tozstoo ™ Yt D@D converges and find its sum.
2.3. Properties of convergent series
Overview

In this section, we are going to discuss about eayent series and their properties in
detail. Also we are going to determine whether atr an particular series is convergent or

divergent by using these properties.

Section Objective

On the completion of this subtopic, students shbeldble to:
» explain the properties of convergent series;
» to use the properties of convergent series so dst@ymine if a particular series is

convergent;

Theorem 3:1f Y0, a, and X0, b, are convergent series and c is a real number, then
. Yn=1(an £ by) converges an@;(a, +b,) =Xii;a, + XiLiby

ii. Yneq Ca, converges an¥;_; c.a, = C. Y nzq ay

Caution: The product series;-; a,b, may or may not be convergent.
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Example 6:

a. Find z;?zl(zin +

Solution: ¥, ( = Xn=1 50 D n=

1+20
3n

b. Find X},

Solution: Z;‘f;l( = ) din=1 (§) ] Y- 1 3T Ln= 1( )n

1 2 5
-3 4 3 _ ]
T + 1-2 t2=7
C. Zn 1( n(n+1))
Solution: Y% (i ) PP Y 4. ¥ 1o — 2. 00
© 4&n=1\5n n(n+1) n=15n n= 1n(n+1) n=15n n= 1n(n+1)
=4(1)-21)=2
d. y=_, 22n 6l

Solution:

S 226 = B 226,670 = N0, 5 6= 6.0, 0 =6. 50, ()
n=1 . n=1 U n=1 6“' n= 16“ . n=1 3
2
- 6<1i3> = 6(2) = 12
3

1. The seriesy.;-, (

Remark 3:

5 is calledtelescoping seriebecause when we write the

partial sums, all but the first and the last teoascel.
2. A finite number of terms do not affect the convergge or divergence of a series.
i.e. if Yoln4+1an CONverges, then the full series,—;a, = Zg‘:lan + YN+1@n

n+1
) ?

Example 7: Given Y7, (_131n+1 = In2 , then find the sum op ;_ 4

_1)n+1 ( 1)n+1

1
Solution: 3., ¢ =¥3, andIn2 = (1 _§+§) +

+ T, S

H (o] (_1)n+1
From which we get Y., — = In2 —-.

0 (_1)
Zn=4
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Exercise 2.3
o 142" . o 142"
1 If X5, =5/, , then find ¥y, —— 2
2. If n +n?+4+n3+-.=2n,thenwhatis the value of ?

3. If S5, = =" thenfind £2., 2

2.4. Convergence test for positive term series
(Integral test, comparison, ratio and root test)

Given aseries it is not always simple to determine whetther series converges or
diverges. For some series it may be suffice to koaly the convergence. The following
convergence tests will help us to know only coneang of a theorem.

Definition 6:
+ Non negative seriesif a, = 0 (non negative) for every positive integerthen

the series);;_; a, is called a non negative series.

+ Positive Series:If a, > 0 (positive) for every positive integer n, then geries

Yn=1dy IS called a positive term series or positive serie

Remark 4: Consider a positive serigy—,a, i.e.a, > 0 for all n, the series of partial
sums of Y, a, increases and hence the se}s ,a, converges if and only if its

sequence of partial sums is bounded.

Example 8: The following are some positive series
a. 1+2+4+8+ -
b. T, "
Tests of convergence for positive series
Q1. Why we need convergence tests?
Solution: For most series the exact sum is difficult or asgible to find. It may be suffice

to know at least that the series converges.

Q2. Why, then, non negative or positive series issadered?
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Solution:

* Because the study of their convergence is compatatsimple and can be used in
determination of convergence of more general sevd®se terms are not
necessarily positive.

* Itis easy to see that a series of positive teriwerge if and only if its sum istoo.

Tests of convergence
There are two types of convergence tests: onectirapares a non negative series with an
improper integral and one that compares a given magative (positive) series with
another series.

2.4.1. The integral test

This test compares a non- negative series witimgnaper integral.
Integral test theorem 4:Let {a, };=; be a non- negative sequence fbé a continuous
decreasing function defined ¢, o) such thaf(n) = a, for all n > 1 . Then the series
Y, a, converges if and only if the improper integ@O f(x)dx converges.
Remark 5:

1. When we use the integral test, it is not necessastart the series or the improper
integral atn =1 .

Example 9:in testing the serieijff:‘}ﬁ , we use the improper integral
oo 1
f4 Y dx

2. ltis not necessary thé&be always decreasing; what is important is i

ultimately decreasing fot larger than some number

3. Since the initial few terms of the series do néctfits convergence, we may
sometimes define the integral test on the intedifédrent from[1, o).

4. The integral test is most effective when the fumefito be used is easily integrated

Example 10:Determine whether or not the following series @nges or diverges.

Inn

a. Z;ole
L Inn . © Inn, o . .

Solution: given a, = — from which we get{a,};=; = {T}n=1 is a non negative

sequence.
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The functionf(x) = me is non negative and continuous foe> 1 for logarithm function

is continuous.

To check if the function is decreasing we needoimute its derivative, that is,

1
= x-1
f'(x) = (‘“X) = U“X) x7Inx = “ . Thus f'(x) < 0 whenlnx > 1,

when x > e. Therefore, fis decreasing when> e.

Applying the integral test:
f f(x)dx = foolnxdx = lim,e ftlnx dx

(Inx)?2

= lim_, |§ =limee; [(nt)2 - (In1)?] = %.tlim(ln )2 = oo

The improper integral is divergent implies the eeﬂ;‘;;l% also diverges by the integral

test.
b. Y- annn
Solution: let f(x) = — for x = 2 . Clearly f is continuous and decreasing[@n) .

To check if fis decreasmg we have

; _ (D' xInx-(xlnx)’ _ —(1+lnx) L . .
f'(x) = (xlnx) = N7 = o < 0 for x = 2 which implies fis
decreasing.
Now f f(x)dx —f —dx = llmt_,oof

lnx

= limi, 0 (In(Inx))|5 = lim,, o [In(Int) — In(In 2)] = oo
Hence, by the integral teit;‘;;zﬁ diverges.

The P-Series

Definition 7 (The p-serie3: The seriei};‘l‘;lnip wherep a real number is called a

pseries.

Theorem g p-series test The p- series}};‘1°=1nip

I. Convergesifp > 1

il. Diverges if p < 1.
Proof: we use the integral test to prove the p-seéast t
Casel. Whenp <0
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The termnip does not tend t@ as n — oo. Thus by divergence test, the seﬁﬁ&lnip

diverges.
Case Il. Whenp > 0
If p=1, the series is harmonic series; consequentlysehes is divergent.

Assumep > 0 andp # 1.

Let f(x) = Xip for x> 1, then f is decreasing and continuous|dnceo) .

Thus floo f(x)dx = flooxipdx = limt_,oof = dx = lim— .x!P|

t—oo 1-Pp
1 1

= _hmt—wo(tl P-1) = _hmt—wo( -1 1-p

-1 1) = _llmt_,oo

If p>1 ,limt_,ootp% exists and if0 < p <1, then limt_,ootp—_1 does not exist which
implies floo f(x)dx converges ifp > 1 and diverges ifo < p < 1.
Hence the p-serieE;‘lenip converges ifp > 1 and divergesifdo <p <1.
Example 11:Test the convergence or divergence of the follgvgeries using the P- test.
a. Z;‘f:l%
Solution: herep =1, the p-seriei;?:l% diverges and is called harmonic series.
b. Y1
Solution: p =2 >1 and hence by the p - series test it converges.
C. Xn=1 2/3
Solution: p = 2/3 < 1, and, hence it diverges.
d. Eﬁozlm
Solution: p = 5/4 > 1, therefore it converges.

2.4.2. Comparison test
Let >, a, and Y72, b, be non negative term series (or positive series)
i. If YXp_;b, converges and <a, <b, foralln > 1, then),;, a, converges and
Yn=12n < Xnzq by.
i. If Yo_,b, divergesan® <b, <a, forall n>1,then)_;a, diverges.
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Example 12:
a. Show thatz;;°=12nlJrl converges.
Solution: S S zin forall n>1 and Z;‘,‘;lzin converges (why?).

1 1
Now leta, = Py and b, = > Then we

21’1
1
« Xitiby, =XiL;5; converges and
* a, < b,foralln

. . 1
Hence from the comparison test it follows tlié(f:lm converges.

1

b. Show thad >,

2vn-1
Solution: we know that2yvn — 1 < 2vn . From which we obtain— < —— for all
2vn — 2vn-1
n=1.
But Y = = 12‘” —=1 > —— is ap series with = 2 <1, therefore > =
n=1 2\/5 2 n=1\/ﬁ 2 n=1 n1/2 p 2 y 1yZan=1 2\/5
diverges.
Now leta, = — — and b, = —

2v/n-1 2vn

* 0<b, <a,foralln and
* 2n=1bn :Enzlm diverges
Hence from the comparison test it follows tlﬁlez\/ﬁ%l diverges.

c. Show that Z;‘;’zlﬁ converges.

1

Solution: - — < — = =7

1 . . 1
— forall n >1 and since the sené’,ﬁlm converges,

then by the comparison test the seEﬁtlzn—l_l converges.

Remark 6:
In using comparison test, we must, of course, Isme well known serieg:;-; b, for

the purpose of comparison. Most of the time wearseof the following series:
i P-series i.eZ;‘{;lnip wherep > 0

il Geometric series i.€;0-; a,r" !
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Example 13:Determine whether the following series convergediverges.

5
a. 0 —
Zn=1 2n2+4n+8

. 5 5 5 . . .
Solution: we know that————< — foralln > 1 and };_, — is a p series with
2n?+4n+8 2n? 2n?

. 5
p = 2 > 1, hence, converges. Then by comparison mlm converges.

o  2n
b. Xh=1 3n3-1

. 2 2
Solution: forn > 1,n3 > 1 and3n3 — 1 > 2n3 ; consequently we have—— < ——= =
3n3-1 2n3

1

o
From the p-series tes;E;';’:ln—l2 converges. Thus by comparison tEﬁLleng—n_l
converges.

Theorem 6: (limit comparison test):

Let Y2, a, and Y0, b, be non negative term series (or positive seriagpose

limn_mol"i—n = L, where L is a positive number.
n

a. If Y;2,b, converges, so doeg,-; ay -
b. If Y2, b, diverges, the};, a, diverges.
Example 14:Test the convergence or divergence of the follgvgaries using limit

comparison test.

4n-3
a. Y1

n3-5n-7

L . . _4n _ 4 _ 4
Solution: consider a serieb,, = === Moreover, we know thap;_, b, = Z;‘;;ln—z

converges and

4n-3
n3-5n-7
4

4n3-3n% lim 4-3/n _
4n3-20n-28 n=00 420/ 28/ |
n n

. an . .
llmn_)oob— = lim,_ e = limy_,
n

n2

Thus by limit comparison test the seriEﬁ’:l% converges.

. 1
b. Z““%/ﬁ
Solution: we disregard all but the highest power of n mdenominator and we obtain

1 1
3 3 - 2/ .
V8n 2n /3

But we know that}];';l%/3 is a p series witlp = 2 < 1, hence diverges and
n
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1
3 2
. an __ 1. Ven2—s5n __ 1 3’ 8n 1 3 8
llmn_)ooa = lln’ln_)oo T = lll’l’ln_)oo m —lll’l’ln_)oo m = 1.

3
8n2

. . 1 .
Thus by the limit comparison test the semlﬁ diverges.

2.4.3. The ratio test
Let X .—;a, be non negative term series (or positive serfesjume thas,, = 0 for all n
and that

limn_,oan—Zl = r(possibly o) ,
where r is a non negative number.
a. fo<r<1 ,then }>,a, converges.
b. If r>1,then} ., a, diverges.
c. If r=1, the test fails; we can’t draw any conclusionwtlibe convergence
or divergence of the series.
Example 15 test the convergence or divergence of the folhgwi

o 2"
a. Zn=1§

2n+1

C s ans1 _ 1. (n+1)! Y 22"n! .. 2
Solution: r = lim,_, e lim, /2 = llmn_)oom = llmn_)oon— =0

+1
n!

Sincer =0 < 1, then the serieg;?:li—' converges by ratio test

b. ¥ 2
. anlﬁ

. . 2n 2n+1
Solution: we havea, = = anda,,; = e

2n+1
: a : n+1)2 . 20t tn?
Now r = hn’]n_>m:—n+1 = llmn_)w( )/Zn = l1mn_,oo iz =2.
n2

Sincer = 2 > 1, then the serieg{?:li—z diverges by ratio test.

n!
C. Zf?:ln_n
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(n+1)!
(n+1)n+1 )

, !
Solution: we havea, = :—n anda,; =

n J—
nn

(n+1)!
. . n+1 1 . !
r=limp_e 22 = limp_., (n+1) /m == < 1.Thus the serie§}i2; — converges.

2.4.4. The root test
Let >, a, be a non negative series and assume that
lim, o Va, = (limp_e an)l/n = r (possibly =)

where r is a non negative number.

a. If 0<r<1 , then };_;a, converges.

b. If r>1,then);.,a, diverges.

c. If r=1, the test fails; we can’t draw any conclusionwthibe convergence

or divergence.
Example 16:Test the convergence or divergence of the follgvgeries.
a. Zf?:lzln

n n/n

Solution: r = lim,_,, Ya, = lim,_, n’% = llmn_)OOTH = limp 0 —.

2 2
. 1
By using L'Hospital’s rule we haviém,,_,, n/n = glimnownn'/n. — 1 Thusr = % <1
. . . n
implies the serleEf;lz—n converges.

Inn

b. X, (a2

: . . n[1 . 1 :
Solution: r = lim,_ Y@, = lim,_,e / )" = lim, ., —— = oo .Therefore the series

diverges.

Exercises 2.4

1. Test the convergence of following series using lbmnparison test

1 3

1 n
a. Y»  —— b. ¥  — c. Yo , ——
Yn=1 2n3+1 Yn=1 3n+1 Yn=1 nS5+5n2+7

2. Test the convergence of following series usingdbetest

© 1 b o 2" o0 n\"
a. Zn=2 (Inn)n . Zn=1n_n C. Zn=1 (E)
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3. Test the convergence of following series usingdtie test
00 1 o nn o) n 0 n!
a. Yn=1; b.Xn=1— C. Xn=175n d.Xn=15,
4. Test the convergence of following series usingrtegral test

1 1 . 1
aYn=1517 b.X7-1— . pisaconstant B, —

o _1_
d-2n=1 o

2.5. Alternating Series and alternating series test

Sometimes all the elements of the sequence maysiéve or negative and for such we
have stipulated the convergence tests. But wheeldment are alternatively positive and
negative, the series is named as alternative saridsfor this we introduce test for its
convergence, and is derived from the series calkeglternative series test.

Overview

In this section, we are going to discuss aboutrraténg series and its properties.
Moreover, we will also learn to determine the cageace and divergence of alternating

series by using the test.

Section Objective

On the completion of this subtopic, students shbeldble to:
» define alternating series;
» determine whether or not a particular series evadting series or not;
» determine whether a particular series is convergedivergent;
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Definition 8: If the terms in a series are alternatively posiand negative, then we cal
the series an alternating series; or else,

A series of the forma; — a, +az; —a, + -+ (-1)"!.a, + .. or

T (D)™ a,

Or

—a;+ a;—azg+az—ag+-+ (-D".ap+ ... or Y,,(—-D".a, where

a, > 0 for alln € N is called an alternating series.

Example 17:Here some examples of alternating series.
_r r rtur 1,y o qy+t L
a l—c+-—+-—=+ Y= (DM -
b. XX (—D™1.3"=3-9+27 81+
c. ¥, (-D" = -14+1—-1+1—-1+"

Alternating series test
Theorem 7: Let {a,};=; be a decreasing sequence of positive numbers #uh
lim,,.,a, = 0. Then the alternating seriesy$,;(-1)%a, or Yo ,(—1)"1a,
converges. Moreover, i, andS are then™ partial sum and the sum of the infinite series

S=Yx,(—1)"1a, respectively, therfS —S,| < a,,, for all natural number.

Remark 7: R, = |S—S,| is called the™ error in approximating by S,, .

Example 18:Test the convergence of the following series usim@glternating series, if
possible.

. (_1)n+1
a. Yneq

n

. . 1 . 1 1
Solution: From the series, we hawg, = = and since— < - foralln € N, then
apsq < a, foralln e N.

. . . . . 1
= {a,}nc; IS a decreasing sequence of positive numbersliapd ., a, = lim,,_, -=0

_1)n+1

Therefore fo=1( is convergent by alternating series test.

n
k
"k2+1

b. TR (-1
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X

. n . . .
Solution: a, = = which impliesf(x) = i1 [1, )
, X (¥ +1)-x(x2+1)  1-x?
= f'(x) = T = @ = 0 forall x € [1,00).

= f(x) is decreasing off1, )
ap4 < a, foralln e N.

= {ap}n=, IS a decreasing sequence of positive numbers and
- - n
limy_ea, = limy_ o = 0.

Thus by alternating series t&&f , (—1)*+. —

i1 converges.

11’!
C. Zn 5( )

Inn

. 1 . . . . . 1
Solution: a, = — isa decreasing non negative sequencdiand, ., a, = l1mnﬁmm =

0. Thus by alternating series teEﬁ;S% converges.

1

d. YL, (-DM—

2n+2

. 1 . . . .
Solution: a, = 5 isa decreasing sequence of positive numberdiamg, ., a, =

1
limy_,o—— 5 =0, thus, by alternating series ted_, (—1)"*!.— S— converges.
__4yn _7nt6
€ X ("D e 10n+1
. 7n+6 . . . .
Solution: a,, = ﬁ is a decreasing sequence of positive numberdiamg, ., a, =
7n+6 7

limyco 10n+1 10 #0

7n+6
)n

Therefore, by divergent testy; o, (—1 —

D I G P Las s

4n

diverges.

n+1

Solution: a, = e is a decreasing sequence of positive numberdliang, ., a, =

n+1 1
=220
4n 4

lim,_,

Thus by divergent tesf >, (—1)"+1, %1 diverges.

n+

g. En 1(_ )n n2+3n+5
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n+2

Solution: ap = 21 3nis

is a decreasing sequence of positive numberdiamg, ., a, =
lim n+2
Mn—eo T2 Snts

n+2

: : ® /_1yn
Thus by alternating series te3{;_,(—1)". S aniE

converges.
h. e, (-D" =

. 1 . . -, ]
Solution: a,, = % is a decreasing sequence of positive numberdiamg, ., a, =

lim,_, an = limnﬁmﬁ =0 . Thus by alternating series te3{;—,(—1)". an converges

2
e

2n+1

2
Solution: a,, = z:T is not a decreasing sequence of positive nundetdim,,_,., a, =

2 2
lim, e, >—— = c0. Thus by divergent tesfir>, (~1)"** ——

diverges.
2n+1 n+1

1

o Zaaa (DM =

n1/10

. 1 . . ", .
Solution: a,, = - isa decreasing sequence of positive numberdiangd, ., a, =
n

limn_m% = 0 . Thus by alternating series tedf;>_, (—1)"*1. %10 converges.
n n

o0 (Inn)?
k. T (=D ==

. 1 z . - .
Solution: a, = % is a decreasing sequence of positive numberdiamg, ., a, =

2
lim, o 8 = Jim, ., 22 =0
n
n (Inn)?
)" n

Thus by alternating series te${-,(—1 converges

Exercises 2.5

1. Test the converges of the following alternatingeser

o (_1)n+1 o] o (_1)n+1
a. Zn=1 n2 b2n=1(_1)n+1 n C. Zn=1 n2+1
) +1 i (2
d. 52, (-1 sin (2)

(_ 1)n+1
2n—1

2. Given the serie9;-4

a. Prove the series converges
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b. Find the maximum error made in approximating thenf the first 8 terms ?
c. How many terms of the series are needed in ordebtain an error which

does not exceed 0.01 ?

2.6. Absolute and conditional convergence

Where the terms of the series are positive, weezmily determine the convergence or
divergence of the series by using one of the foeatroned convergence tests; however, if
the terms are negative or a series with positive re@gative terms, we need to devise a
convergence tests with which we determine the agevee or divergence of the series.
But most often this is too difficult. In such a easve can specify the need of absolute or
conditional convergence.

Overview

In this section, we are going to discuss about labs@nd conditional convergence, and
the test of convergence associated with.

Section Objective

On the completion of this subtopic, students shbeldble to:
» define absolute convergence;
» define conditional convergence,;

» determine series which converge absolutely, canally or neither.

Definition 9: A convergent seri€s; -, a, is said to be
i absolute convergent i¥,;_; |a,| converges.

ii. conditionally convergent i};;_, a, converges bup.;, |a,| diverges.

Remark 8:

1. When the serie9;>, a, converges, the series,-; |a,|] may or may not
converge.

2. All convergent non negative (positive) series cages absolutely.
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Example 19: Determine which series converges absolutely, ag®ge conditionally or

diverges.
a. I (-1

. 1
Solution: a, ==

n2

is a decreasing sequence of positive numbers aiml,_ . a, =

lim, 4 n—12 = 0 . Then by alternating series test the seijﬁ_sl(—l)“.i converges.

n2

Consider the absolute value of the series,
© 1 o 1
Zn:l |(_1)n'§ = Zn:lp

is a p series witlp =2 > 1, hence, it converges. Therefcﬁiﬁ’zl(—l)“.ni2 is absolutely

convergent.

1

Solution: The series is defined by, (—1)" o From which we havea, = zin and,

clearly it is a decreasing sequence of positive lmersm Moreover, we havém,_ ., a, =
. 1
llrnn_>00 2—n = 0.

Therefore, by alternating series test, the sgifgs (—1)" zin converges.

Consider, then, the absolute value of the sdahes$,s,

o 1 » 1
ano |(_1)n' on| = Zn:lz_n

. . . . 1 .
IS @ geometric series with= 7 < 1 ; hence, it converges.

Therefore}.;2, (1" zin is absolutely convergent.

[e's] (_1)n
C. Xoeq -

. 1 . . .y
Solution: we have a, == and is a decreasing sequence of positive nunmdosas

lim,,a, = limn%o% = 0. Thus by alternating series t@f_, % converges.

The absolute value of the series
2

is a harmonic series which diverges.

Therefore} ;- % converges conditionally.

n"

n

1
= Z;O=1H
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d. T2, ()" —

3n+5
Solution: The series is an alternating series apd= ppll decreasing sequence of

1

positive numbers. Moreovelim,,_,,, a, = limnﬁwm

= 0 . Thus by alternating series

testyi, (—1)™. ——

converges.
n+5

1 1

H __1\n+1 — '
The absolute value of the series)§~, |( 1), anrs| = Zn=13n+5 .

Using an integral tesf(x) = ﬁ is continuous and decreasing fi) o) .

1 . b 1 . 1 b
Z;O:lm = lll’l’lb_)oo fl mdx = llmb_,oog .ln|3x+ 5”1

1
= —.limIn|]3b+5|/—1In8 =
3 b-oo

o 1 .
Yo (=Dt m| diverges .

Therefore Y5, (-1, ?15 is conditionally convergent.

o 1
e. Yot (DM =7

. 1 . . . s 1
Solution: We havea, = S isa decreasing sequence dnd,_ . a, = lim,_ -

= lim,_, oo —— = ! =—1 _=1=%0

1 1 Inn
—=Inn s =
en limp, 0 €n

Inn elimn_’“’T

Thus by divergence teX>_, (—1)"*1. n%/n diverges.
Remark 9:
1. Every absolutely convergent series is converghat,is, if >0, |a,| converges,
then }.0°-; a, converges.
|Xn=1 anl < Xn=1 lanl
3. If ¥, a, and) >, b, are absolutely convergent, theff-, (a, +b,) and

Yo, ca, forc € R are absolutely convergent.

Theorem 8: Every absolutely convergent series is converdén®;;_; |a,| converges,
then Y-, a, converges.)
Proof: (omitted)
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Exercises 2.6

1. Determine whether the following series is absojuteinvergent, conditionally

convergent, and divergent?

w D
a. Enzl N

b. b yo, S

2.7. Generalized Convergence tests

Where the terms of the series are positive, weezmily determine the convergence or
divergence of the series by using one of the foeatraned convergence tests; however, if
the terms are negative or a series with positive egative terms, we need to devise a
convergence tests with which we determine the ag®vee or divergence of the series.
But most often this is too difficult. In such a easve can specify the need of absolute or
conditional convergence.

Overview

In this subtopic, we will see the various convergetests for a series with positive and
negative terms. We verify this by using variousregkes.

Section Objective

On the completion of this subtopic, students shbeldble to:

= explain the need of generalized tests;

» use generalized convergence tests to determinehamet not a particular

series converge absolutely or conditionally.
Theorem 9(Generalized convergence tests): X&t, a, be a series
1. Generalized comparison tests

If lay] < |b,| forn>1andif Y3, |b,| converges, thel,~, a, converges
(absolutely).

2. Generalized limit comparison tests
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If lim,_q |2—“| =L , wherel is a positive number and ¥;, |b,| converges, then

Yoo, a, converges (absolutely).
3. Generalized ratio test

dn+1

Suppose that, # 0 forn > 1 andlim,,_,,

= r (possibly o)

« If r <1,then}y; a, converges absolutely.
e If r>1,then); a, diverges.
 If r=1, we cannot draw any conclusions from this testal
about the convergence of the series.
4. Generalized root test

Suppose thdim,,_, I1/|a_n| = r (possibly o)
« If r <1,then}y; a, converges absolutely.
e If r>1,then) >, a, diverges.
 If r=1,we cannot draw any conclusions from this testal
about the convergence of the series.
Example 20: Test the convergence of the following series usthg generalized
convergence tests.
a XD

Solution: we havea,, = 6% and using the generalized root test we obtain,

1
. . n[n . R limpoe en ™ ? 1
R = limpLe vl]ay] = limpoe /6—n = limyp— = —=2—— == <1.
Therefore,
n

S (D
converges absolutely.
Or,

Using generalized ratio test we have,

n+l s/n

ent1/ gn

dn+1 n+1 Q

6.6 n

r=lim,_ =lim,_ = limy_,

=2 iy, (142) =2< 1
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Therefore,

Z;‘,°=1(—1)“.61 converges absolutely.

n

(-8)™.n

b. Xi=

. -8)".
Solution: we havea, = 61 h

. ) n
= limy e v/lap] = limyse

and using the generalized root test we obtain

(-8)"n

6N

o nfrg\" 8 .. Mn o= 8
= lim,_ e - .l’l—g.llmn_,oo n—g>1

Therefore,

yo COM Giverges.

6n

x3

C. Showthatznl —x+—+ + .

a. Converges absolutely fok| <1
b. Converges conditionally fotx| = —

c. Divergesforx =1 and|x| > 1
Solution: If x =0, the seriesz;?zl% converges.
If x # 0, using the generalized ratio test we have,

. a
r=lim,_q &2

i Xn+1 n
= lim 0 — =lim,_ |x —| = ||
Therefore,
soo X0 {converges for |x| < 1
n=1n = (diverges for |x| > 1
Forx=1,YL 1 =Y 1 is a harmonic series which is divergent.

11’1
Forx = — ]-an _an

is an alternating series which converges conditlgn

. (_1)n.X2n+1 X3 XS X7
d. For what value ok does the serleEf{’:lT =X—o oot

a. Absolutely convergent

b. Conditionally convergent
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c. Divergent
Solution:
Case |: ifx =0 , the series converges .
Casell: ifx+#0

Using the generalized ratio test we have

ant1 (-1)n+1, x2(n+D+1 2n+1

2(n+1)+1 ©(~pn. x2n+1]| T

r=limy_,q

=limp_, e |

(_1)n+1. %2043 on41q

= lim
N2 [(2n+3). (1N, x2n+1
. (2n+1) 2 2
= lim |X2 L — = x?*=x
n—oo (2n+3) Ix°l

Thus by the generalized ratio test, the series

5o (-1) . x20+1 _{converges for[x?|<1= x| <1
n=1 2n+1 diverges for [x?|>1 = x| >1
(_1)n.X2n+1 (_1)n+1 ) ) . )
For x=-1, Z;‘;;lT =Yg S isan alternating series, hence, the series

converges by alternating series test.

2n+1

For x=1 ,Zgo=1(_1)+x

-1 . . . .
T =Z;‘1°=1(2n—) is an alternating series which converges by an

+1

alternating series test.

Using integral test

(G L b 1 T 1 b
Z;ozlm = hmb_)oo fO m dx = llmn_,oo[z .lnI2x+ 1|]|0

= limb_)oo%InIZb +1-0= o

Thus, the given series converges conditionally.

n-1

e. For what value ok does the serieE;‘f’:lﬁ
a. Converges absolutely
b. Converges conditionally
c. Diverges
Solution:
Case I: ifx =0 , the series converges
Casell: ifx+#0

Using the generalized ratio test we have
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n n.3n

. X n
=lim | :
n—oo (n+1) . 3n+1 xn—1

= = lim |X
- N=00 |3 * piq

X

3

dn+1

r = limy_

an

Thus by the generalized ratio test, the series

. Converges absolutely fo|r’3—(| < 1 which implies |x| < 3

i. Diverges for|§| > 1 which implies|x| > 3

. —3)n-1
For x= -3, series becomeE;":l(n) =y,

.3n

-Hr . . .
( n) is an alternating series and ,

hence, converges by alternating series test.

-1)n 1 . . . .
But) >, |( ) | = Z;‘f;l; is harmonic series and diverges.

n

-1

For x =3, the series becoméi_, >

1 1 1 . . .
- Z;‘;lg =3 . 2:n=1— Which is a harmonic

3n n
divergent series.
Therefore the series converges absolutelx|iik 3 ; converges conditionallyx = —3

and diverges$x| >3 andx =3 .

Exercises 2.7

1. For what value ofx does the following series
I. Converges absolutely

ii. Conditionally converges

iii. Diverges
(x—1)" n.(x—1)" (—1)n=1, xn-t
4 Xn=1n 0. Ynm1Gnna G Znm1 T Gair
o 1 (x+2)"
d. Zn:lZn—l '(x—l)
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Unit Summary:

1) Let {a, };=, be a sequence of real numbers, then the expressiena, + a; +
..+ a, + .. which is denoted by )2, a; , that is, }j2;a; =a; + a, + a; +
..+ a, + ... is called an infinite series.

2) Consider the serie3;j2;a; =a; + a, + az+ ...+ a, + ... , then

+ a, is called then'" - term of the series and, = S, — S,_; .

+« Let S, =Yp,ax=a; + a, + az + .. + a, , thenS, is called the
n'? - partial sum of the series.

£ {S,1>, where S, is then™ — partial sum is called the sequence of
partial sums.

3) Convergent series An infinite series).o-;a, with sequence of partial sums

{ Sy}, is said to be convergent if and only if the semeeof partial sums
{ Sh }22, converges, i.e., itim,_ s, exists, then we say that the ser)g%., a, is
a convergent series and we write it 3%, a, = lim,_ Sy -

4) Divergent series A series).;~; a, is said to be divergent if it is not convergent,

i.e., the serieg;;_;a, is divergent if and only if the sequence of partams
{ Su }oz, is divergent.

5) Divergence test(The n™ — term tesf). If lim,,,a, does not exist or
lim,_.a, # 0, then the seried’;, a, is divergent.

6) Non negative seriesif a, = 0 (non negative) for every positive integerthen

the series).;, a, is called a non negative series.

7) Positive Series:If a, > 0 (positive) for every positive integer n, then teries

Yoo, a, is called a positive term series or positive serie

8) There are two types of convergence tests: onectirapares a non negative series
with an improper integral and one that comparesvangnon- negative (positive)
series with another series.

+ The integral test: Let {a, };>,; be a non- negative sequence abd a

continuous decreasing function defined[®yro) such thaf(n) = a,, for
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all n > 1. Then the series - a, converges if and only if the improper
integral | 1°° f(x)dx converges.

+ The p-series The serie§‘_,;;°=1nip wherep a real number is called a p

series.

Theorem.( p-series test The p- seriesz;‘;’zlnip
I Convergesifp>1
ii. Divergesif p < 1.

+ Comparison test:Let )0 ; a, and Y72, b, be non negative term series
(or positive series)

i. If Yo,b, converges antl <a, <b, foralln > 1, then);., a, converges and
2?10=1 dn < 2?10=1 bn-
i. If YXo_,b, divergesan® < b, <a, forall n>1,then)_;a, diverges.

+ The root test :Let Yo, a, be a non negative series and assume that

limp e Va, = (limy_e an)l/n = r (possibly ) , where r is a non negative number
a. If 0<r<1 , then };_;a, converges.
b. If r>1,then);.,a, diverges.
c. If r=1, the test fails; we can’t draw any conclusionwhibe convergence

or divergence.

+ The ratio test: Let Y-, a, be non negative term series (or positive

series). Assume that, # 0 for all n and thatlim,,_,, a;“ = r(possibly ) , where ris a

non negative number.
a. f0<r<1 ,then }>,a, converges.
b. If r>1,then) ., a, diverges.
c. If r=1, the test fails; we can’t draw any conclusionwtlibe convergence
or divergence of the series.

11) If the terms in a series are alternatively positwnd negative, then we call the series
an alternating series; or else,

= Aseries of the forma; — a, +a; —a, + -+ (—1)"1.a, + ... or
Yo (=™ a, . Or,

By Kibrom G. and Abrha L 66 AKU



Applied Mathematics Il

» —a;+a,—az+az—ag+-+ (D .a,+ ... or Y, (—D".a,
where a, > 0 for alln € N is called an alternating series
Alternating series test: Let{a,},~; be a decreasing sequence of positive numbers such

that lim,_,., a, = 0. Then the alternating seri€g;-,(—1)" a, or Y5, (—1)"*1a,

converges. Moreover, i, andS are then™ partial sum and the sum of the infinite series
g n

S=Y> (-1 a, respectively, therS —S,| < a,,, for all natural number.
n=1

12) A convergent series,—; a, is said to be
i. absolute convergent ¥o_; |a,| converges.
ii. conditionally convergent i};;2, a, converges bud.;2, |a,| diverges
13) Generalized convergence tests: Y&t; a, be a series
1. Generalized comparison tests
If lay] < |b,| forn>1andif Y, |b,| converges, theR;-, a, converges
(absolutely).
2. Generalized limit comparison tests

. a
If lim,_q b—“

=L , wherel is a positive number and ¥, |b,| converges, then

Yoo, a, converges (absolutely).

3. Generalized ratio test

dn+1

Suppose that, # 0 forn > 1 andlim,,_,,

= r (possibly o)

« If r <1,then);.; a, converges absolutely.

e If r>1,then)’, a, diverges.

 If r=1,we cannot draw any conclusions from this testal
about the convergence of the series.

4. Generalized root test
Suppose thdim,,_, m = r (possibly o)
« If r <1,then);Z; a, converges absolutely.
e If r>1,then)’, a, diverges.
 If r=1,we cannot draw any conclusions from this testal

about the convergence of the series.
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Miscellaneous Exercises

1. If the nt"* partial sum of the series is givenShy= Z—I then find the

a. Third term of the sequence i®&.
b.n" Term of the sequence i,

C.Yn=10n

2. Show that
a. If the series Y.,_; a,, converges theldim,_, a, =0
b. If aseries converges absolutely then it converges

C. If asequence converges then it bounded
d. If asequence is bounded and increasing then it converges

3. Find the following sums

1
n(n+1)

1

n+3
b. T —2)  c X, (DM

4n2 1

a Ype3———

4. Determine whether the series converges or diverges.

a Y b. Tii ()" e iy (- D

1+2n n

n2+1

5. Find the general term of the seque%ﬂ:,e_— g’ ;—;3 } A=

6. If the n* partial sum of the series is given 8y = 2n? + 1, then find the

a. Third term of the sequence i®|. ?
b. nt" term of the sequence i@, ?
7. Which of the following is false?
a. Ifthe series },;°_, a, converges, thetim,_ ., a, =0 .
b. If lim,. a, does not exist dim,_, a, # 0, then the serie3;_; a,
is divergent.
c. If lim,_,, a, =0, then the series).;~; a, converges.

Justify by giving a counter example

8. Test the convergence of the seriE'g’:l%

9. Show that zs;;g,ﬁ

10. Define absolute and conditional convergence.

converges and find its sum.

By Kibrom G. and Abrha L 68 AKU



Applied Mathematics Il

11.Find value c such that the serig§_,(c + 2)" =3.

n

12.Use integral test to determine convergence or gjgece of the seriéﬁf;leziﬁ .

13. Using partial sum determine whether the seﬁﬁslg converges or diverges.
. . foe) n

14.Consider the seriesn- D

a. Find partial sums,, by first finding partial sums,; S, S; and S,.

b. Find the sum of the series.

2n
15 .Determine the value af such that the serieE;‘{’zle converges and for what

value ofx it diverges.

16.Given a serie§ s (—1)"* 1

n
n2+1

a. Determine whether the series absolutely convergesn
b. Show that it is convergent series.
17. Every series which is not absolutely convergendivsrgent.(True/False If false,

give a counter example.

20 40

18. Determine whether the seriés— % t 55t - is convergent or divergent. If

it is convergent, find its sum.

2n
19.Find the value ofx for which the series),,_, (%) converges.
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Chapter Three

Power Series

Introduction

The purpose of this chapter is to give a systemaxigosition of some of the most
important thing about a power series.

The representation of functions of powerieseris one of the most useful of
mathematical techniques in a wide variety of sibr. Sometimes we start from a
function that is defined for us in some manner employing series, and seek to expand
the function in a power series. In either of theiseations, we need to know something of
what properties a function has if it is definedébgower series.

This chapter begins with a statement of wisatmeant by power series, then the
question of when these sums can be assigned vialaddressed. Much information can be
obtained by exploring infinite sums of constantrter however, the eventual objective is to
introduce series that depend on variables. Thisgmts the possibility of representing
functions by series. Afterwards, the question ofvhoontinuity, differentiability, and

integrabiltiy play a role can be examined.

Unit Objectives:

On the completion of this unit, students shouldble to:
= understand the definition of a power series,
= define the convergence and divergence of powegseri
» find radius of convergence of a power series,
» find the limit of convergent power series,
= represent a wide class of functions by a Tayloglses,
= apply Taylor's polynomial,
= approximate a function by a Taylor polynomial.
» find the derivative of a power series

= find the integral of a power series
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3.1. Definition of Power Series

Overview

In the previous sections we focused exclusivelgemes whose terms are numbers. In this
section we will consider series whose terms aretfans with the objective of developing
the mathematical tools needed to investigate threvergence of Taylor and Maclaurin

series.

Section objective:

After you complete the study of this subtopic, whwuld be able to:
= define the power series;
= give an example of power series; and realize #s&lrior power series.
» find a power series
The general form of a power series is
ag+a;(x—xg) taz(x—x%p)% +az(x—x%0)3 + -+ ay(x—x)%+ - (3.1)
this is called a power series (R — x,). Hencex, is fixed andx is variable. In the special
case wherg, = 0 the series takes the form
ag + a;x +ax? + azx® + -+ apx" + - (3.2)
It turns out that in studying power series it iffisient to consider (3.2), since the general
case (3.1) can be reduced to (3.2) by a translatiahe origin along the axis. For this
reason, all the general theory of power series hésr will be developed for series of

power series of, of the form (3.2).

Definition 1: A series of the form
ap+a;x+ax? +azx3+ - +apx®+ -+ or Yol,anx®
is called a power series xor a power series.
Or, a more generalized form of a power serigxin a), that is, an infinite series of the
form
agt+a;(x—a)+a(x—a)l+--+a(x—a)r+- or Ysa,(x—a)"

is called a power series (R — a).

If a =0, this general power series becomes a power sanes
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Remark 1:
1. The initial index of a power series can be any negative numbers, that is, for the
power serie§ s a,x" = ap + a;x + a,x% + agx> + -+ apxt + - .
If a, =0, the power series is given By~ a,x".
If a; =0, the power series is given Py, a,x".
2. Inthe power seriey -, a,x", a, represents the constant coefficients amglthe
variable.
Example 1: The following are some examples of power series.
a Yoo2x™ =24 2x+2x%2+ - =2(1+x+x? +--+) is a power series with
coefficient 2 and centre at O.
b. Y2 ,x" =1+x+x%+x3+ - is power series with coefficieats = 1 and
centre at 0. Here the power series is geometrieser
C. Yoon(x—2)"=(x—-2)+2(x—2)2+3(x—2)%+ - is a power series with
centre at 2 and coefficient, =n .
d. Z;‘f;én—is(x - =(x-7)° + %(x -7 + %(x —7)8 + ...is a power series
with coefficienta, = ﬁ and centre 7.
Example 2:
1. Show that i =1-x+x2—-x34+x*-x5+ =¥ ja,x® for |x] <1
Solution. First we consider the power series:

T+x+x2+x3+x+ -
This is a geometric series with ratio x. Therefareonverges for |x| < 1. The sum of the

series is:lx. Substituting — x for x, we have

1-x4+x2—x34xt xS =——= — x| <1
1-(—x) 1+x

Thus,

L=l —x4+x2 - x5+ =Y, (-, x| <1

1+x
2. Find a power series for the rational fracti%.
o

1-%/y

the infinite geometric series with the first te|=21rrand ratiog:

Solution. We can write this function agi—x = . As can be seen, this is the sum of
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11X 1 Xp 1oXg 1, x ¥ X s X'
2+22+2(2) +2(2) + _2+22+23+24+ _Z“=02n+1

The given power series converges for [x| < 2.

. . 6
1. Find a power series for———
5x“—4x—-1

Solution. First we find the partial fraction decompositiontbfs function. The quadratic
function in the denominator can be written®s* — 4x — 1 = (5x + 1)(x — 1), SO we can

set:
6X _ A B

5x2—4x—1  5x+1 x-1
Multiply both sides of the expression By? — 4x — 1 = (5x + 1)(x — 1) to obtain
6x =A(x—1)+B(5x+ 1),
= 6x=Ax—A+5Bx+ B,
= 6x = (A+5B)x+ (-A+ B),
A+5B=6
= B0
The solution of this system of equations is A BX 1. Hence, the partial decomposition

of the given function is
6X 1 1 1 1

5x2—4x—1 = 5x+1 = x-1  5x+1 1-x
Both fractions are the sums of the infinite geomederies:

o1 _q_ —5%)2 4 (=5%)3 + - = Y (—
Sx+1 1—(—5x)_1 5x + (—=5%)° 4+ (=5%)° + -+ = YpLo(—=5x)",

ﬁ= 1+x+x*+x3 4+ =30 ) x"
Hence, the expansion of the initial function is
= X o(—5%)" — TiLox™ = Nio[(—5%)" — x"] = T o[(—5)" — 1]x" .

5x2—4x—1

Exercise 3.1

1. Define a power series with center a, where a i$ neanber such that
@M. a=0

(). a=5, coefficienta, =

(i), a=75, coefficienta, =

Nk NR

2. Determine the center and coefficient of the follmyyower series.

[o0] 1 [o0]
A Ypo— (x— D" b.Yw, n?x"
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3.2. Convergence and divergence, Radius of convergenukea

Power Series

Overview

Conceivable a particular power series may be cgererfor all values of x; or else, it may

also not be convergent for any values of x exdepbhe value x.

In this section we study the convergence and dererg of power series, and also we will

be able to determine whether or not a given poegesis convergent or divergent.

Section objective:

After you complete the study of this subtopic, yhould be able to:
= define convergent and divergent power series;
= determine convergent and divergent power series;

» find the radius and interval of convergence of e@oseries;

Definition 2: A power series is said to convergegif the series of real numbers
Yo apx™ converges ak, ; or,

A power series is said to be convergent in a set [@al numbers if it is convergent for
every real numbext in D.

Remark 2:

2. Every power series automatically convergesstot 0 .

3. If x# 0, the series may or may not be convergent; we tadetermine this
using one of the convergence tests but the genedatatio test, though not for all,
is recommended.

Example 3: Determine whether or not the following power sedes convergent or
divergent.

a Yoonx"=1+x+2!x2+3!Ix3+-=1+x+2x>+6x3+ ..

Solution:
Case I: If x =0, the series becom@g_,n!0 =), 0 = 0 .The power series

Yoo n!x™ converges ak = 0 .
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Case llI: If x # 0, using the generalized ratio test,

" an+1 (n+1)!. x"*1 (n+1).n!. x.x"
n-o | a, n—o0 n!.x" n—oo n!.x"
= limn—wol(n +1).x| =00
Then the power series diverges for any 0.
w X _ x?  x3 _ x?  x3
b. anoa— 1+X+§+;+"' = 1+X+?+Z+

Solution: Case I: ifx = 0, the power seriegff:()% convergesak =0 .

. XN X+l
Case ll: if x # 0 , we havea, = — anda,,;, = v
Using the generalized ratio test
T . xitl o xn . x. x" n! _ X
r = lim |—| = lim —/—=11m =11m| |=0
n-o | a, n-o [(n+1)! / n! n-o [(n+ 1). n!.x" n-oo [(n + 1)
<1

The power series converges for any
C. Toox"=1+x+ x4+ x>+ ...

Solution: Case I: ifk = 0, the power serieg—,x" converges .
Case Il: whenx # 0 , we havea, = x" anda,,; = x"*!

Using the generalized ratio test

Xl’l+1 X. Xn

dn+1 — 1 R F
= limy_ |x_n| = limy_, 0 |X|

r=limp,_ = limp_,q

Now by using the generalized ratio test, the posegies).,—, x"
e Converges forr = [x| < 1
 Divergesforr=|x|>1 and
e For |x|] =1, the series becom@§_,x" = Yoo 1" =X, 1 diverges
by divergent test.
* For|x| # =1, the series becom@g’_,x" = Yo_,(—1)" diverges
Therefore the power (geometric) serig§-,x" converges for anjk| < 1 and diverges

for|x| > 1.
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Radius and interval of convergence
Theorem 1: Let )2 ,a,.x" be a power series, then exactly one of the foligw
conditions holds.
i. The power serie¥—,a,.x" converges only ak = 0 . Example).;_,nl.x"
ii. The power serieg _,a,.x" converges for aft . Examplezzg"zo)%
iii. There exists a positive real numi®esuch that the power serig§-,a,. x"
» Converges for alkk with |x| < R , thatis,—R < x <R.

» Diverges for alk with |x| > R

Definition 3:(radius of convergence) the numbRrin part (iii) is called the radius of
convergence of the power serg$_,a,.x" or the positive real numb@rsuch that the

power seried;;_, a,.x" converges for akt with |x| < R or diverges for all withx| > R .

Remark 3:
Every power series has a radius of converg®&wich is either non-negative oy

= R always exists and is always non negative number

Definition 4: (Interval of convergence): The totality (collectjof values ok for which the

power serie¥.,—,a,. X" converges is called the interval of convergerfcg i ,a,.x" .

Remark 4: the interval of convergence takes one and only afnine following forms:
[OIO] =0 ) [_RI R] ) [_RI R)I (—OO ) Oo)i (_R ) R); (_R; R]
How to find the radius of convergence and intervabf convergence

Step 1 Findr, i.e., using the generalized ratio test or rest t

dn+1

exists, then

Consider a power serig§.,a,.x" andr = lim,_,,

n

Step 2:determine the radius and interval of convergence
I. If r=o0,then
* Radius of convergencB =0 .
» Interval of convergenci,0] = 0 ,i.e., converges only at= 0.
ii. If r=0,then
» Radius of convergencB = oo

» Interval of convergence-o, «] ,i.e., converges for alk
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ii. If 0<r<oo ,then
* Radius of convergencB = %
* Interval of convergenck| < R
Step 3:Test the end pointgs = R or x = —R for convergence, then determine if these
boundary points are included in the interval ofvengence or otherwise.
Example 4: Determine the radius of convergence (R) and iatesf/convergence for the
following power series
a. Z?f:o;—z
Solution:z;‘f’zoz—: = Iro)"

Stepl: findr

Using the generalized root test= lim, e v/]a,] = limy_e n/(g)n = lzﬂ

Step2: by using the root test, the power serieseges ifr = lzﬂ <1l = [x]<2
Thus the radius of convergenceRs= 2

Step3: Check at the boundarg =2 or x= -2
For x = 2, the power series becomggoz—z = Yo, 1 isdivergent.

For x = —2 , the power seriegff:()(_zin) = Yo o(—=1)™ is divergent.

The power serie§y_ -
* Radius of convergence B = % =2
» Interval of convergencx| < R = |x| < 2 or(-2,2).
b. E??:oﬁ

Solution: findr , using the generalized ratio test

xn+1

1 1
(n+1)2 x0+1 2

x

dn+1

r = limy_,q = limp_, e = lim,_ e .

(n+1)z.x"

=

n2

x. x1 n X
o G

. n 1
= limy_, e |X . (m)z = |x|

= lim,_
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Step2: Determine the convergence by using the t@sip the power series converges for
r= |x| <1 and diverges for = |x| > 1.
Step 3: Check at the boundary

For x = 1, the power series beconﬁg;()%/z diverges.
n

— n
For x = —1 , the power series becoméﬁ,‘;o% is an alternating series that converges
n

conditionally.

n
The power serieg >, Xl—/
n’2

e Radius of convergence B=1
* Interval of convergencg—1,1)
C. Yneon.x"
Solution: using the generalized ratio test

(n+1).x2+1

n.xn

dn+1

r = limp,_

. . (n+1)
= limp_, = lim,_q |X.T = x|

Determine the convergence by using the ratio teetpower series converges for=
x| <1 and diverges for = x| > 1.
Then check at the boundary points:
For x = 1, the power series becomg$_,n =1+ 2+ 3+ -+ diverges.
For x = —1, the power series becom@%.,(—1)" .n is an alternating series that
diverges.
Thus
e Radius of convergence B=1
* Interval of convergencé-1,1)
d. Yoionlx"
Solution: using the generalized ratio test

ant1 (n+1)1x0+1

n!.xn

r = lim,_ = limy_, e = lim,_|n.x| = o

Which implies converges only at = 0
* Thus Radius of convergence ks= 0

« Interval of convergencf9,0] = 0
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e. YncoX"
Solution: using the generalized root test
r= lim, e I1/|a_n| = lim, W = |x|
The power series convergesrif= |x| <1 and diverges for = |x| > 1
Thus the radius of convergenceRis= 1
Check at the boundary ie.=1 or x= -1
For x = 1, the power series becomg®_,x" = Yoo, 1 is divergent.

For x = —1, the power serieg -, x" = Yoeo(—1)" is divergent.

Hence
* Radius of convergence B=1
* Interval of convergencé-1,1) .
X)“

f. Yo 1 -
Solution: using the generalized ratio test
T ant1| _ 1. ()1 n I n ]
r=lim,_ = lim,_, e —(n+1).(—x)n | = lim,_, |n+1. x| = |x|

="

The power serie o, converges for = |[x| <1 and diverges for = |x| > 1

For x = 1, the power series becom@g™, z)n = fo:l% is an alternating series
and converges conditionally.
For x = —1, the power series - 1 — = =y 17 L is a harmonic series and diverges.
Therefore,
e Radius of convergence B=1
* Interval of convergencé-1,1]
g. 2?121%

Solution: using the generalized ratio test

X1’l+1

(n+1N xn

dn+1

r=lim,_ = limp_ e

|—0<1

r = 0, implies the power serieg;‘f;l% converges for every.

Therefore |
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* Radius of convergence B = oo

* Interval of convergenceg—oo, o)

D" on+s1
h. (o .x<n
Zn=o 2n+1

Solution: using the generalized ratio test

(_1)n+1 . x2n+3 .(2n+1)
(-1 x2n+1 243

dn+1

= | =x*

r=lim,_ = lim,_

The power series converges for = x> <1 = |x| <1 and diverges forr = x? >

1= [x|>1

1 -t . . .
Forx=1, Y 0( ) gt = Z;‘f_ou is an alternating series and converges

2n+1 —Y 2n+1
conditionally.
1 1 . .
For x=—1,%% 0(2n+)1 D G Yol 0 —— is an alternating series and converges
conditionally.
Thus,

* Radius of convergence R =1

* Interval of convergencg—1,1]

Exercise 3.2

1. For each of the following series, find the radidsonvergence(R) and the interval

of convergence

H ( 1)n+1 xn H [} X 2
Y T i D= 1n2n ii. Zn=0n!.(5)

(=3)™ . oo . (x42)"
V. Yn- 13n+5 V.En- oﬁ Vi Xm0 —gmr

2. Suppose that the radius of convergence of the pserés). ., c, .x™ is R, what
is the radius of convergence of the power sepigs, ¢, .x*" ?

3. If the radius of convergence of the power sedgs, c,, x™ is 10, what is the

radius of convergence of the serigs_, nc, x" 1 ?2Y%_ ncfl x™1 2 Why ?

By Kibrom G. and Abrha L 81 AKU



Applied Mathematics Il

3.3. Algebraic operations on convergent power series

Overview

Particular power series may be convergent for allies of x; or else, it may also not be
convergent for any values of x except the one valudowever, its determination is not

always easy.

In this section we study the convergence and dererg of power series, and also we will
be able to determine whether or not a given powees is convergent or divergent by

using properties.

Section objective:

After you complete the study of this subtopic, whwuld be able to:
= decide the convergence or divergence of a powasser

Lemma:
a. If YZ,cy.s™ converges, thep:,c, .x"
= Converges absolutely fox| < |s|
» Diverges whenx| > |s|
b. If ¥ ,c,.s" diverges, thed, o, c, . X"
= Converges absolutely f¢gx| < |s|
= Diverges for|x| > |s|
Example 5:
1. Suppose thagt _,c,.3" is convergent, then determine the convergence or
divergence of the following power series.
a. XYintoCn-2" b. YnzoCn C.Mn=oCn-(=2)"  dXpiocn.(=3)"
e XYn=oCn-(—8)" f Xilocn .5
Solution: Given s = 3
a. x=2<3 ,hence converges.
b. YroCn = XneoCn -1™ which impliesx = 1 < 3, hence converges.

C. YoroCn-(—2)" and |x| =|-2| = 2 < 3; thus, convergent.
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d. Yiiocn-(=3)" = |-3| <3 which is false, therefore,divergent.

€. YloCh-(—8)" = |-8| =8> 3 which is divergent.

f. Yirocn.5" = |5| >3 which is divergent.

2. Suppose thgt,_,c, . 3" is divergent , then what can you say about the
convergence or divergence of :
a XYntoCn-(=2)" b .Xpocn.5"  CXplo(=D".cy.9"
dZne(-1)".c, .3

Solution:

a. YosoCn-(—2)" and |x| = |-2| =2 < 3 , hence convergence.

b. x =5 > 3, hence divergence.

C. Ymo(=D™c,.9" =311pCn-(—=9)" and|x| = |-9| =9 > 3, hence diverges.

d. Yoto(—=D™c,.3" = Yniocn-(—3)" and|x| = |-3| = 3 > 3 which is false and
hence divergent.

Exercise 3.3

1. If Yy-ocn -4™is convergent, then does it follow that the follugvseries are

convergent?
L Xa=oCn . (=2)" ii. Y=o Cn - (="
2. Suppose thad,;_,c, .x™ converges whenr = —4 and diverges when = 6 .
What can be said about the convergence or diveggehthe following series ?

a-Zﬁ:O Cn b-Zﬁ:o Cn - 8" C. Zﬁ:o Cn - (_3)11

432, (=" c, .9"
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3.4. Differentiation and integration of power series

Overview

A power series Y2 ja,x" =ap+ a;x+azx? + azx>+ ..+ ax"+--  or
Y oan (x—a)"=apg+ a;(x—a)+a(x—a)? + az(x—a)®*+ ..+ a,(x—a)" + -
is a function, hence, its derivative and integragaists.

In this section we study the differentiation antkgration of a power series one by one.

Section objective:

After you complete the study of this subtopic, yhould be able to:
» Differentiate a power series term by term;

» Integrate a power series term by term;
3.4.1. Differentiation of Power Series

Since a power series is a function, then its davigaexists. A power series with a non-
zero radius of convergence is always differentiafleis derivative is obtained from
Yooan Xt or Y a, (x—a)" by differentiating term by term inside the intdnat

convergence, the way we differentiate polynomials.

Theorem 2(Differentiation Theorem for Power Series)
If the power serie3 ), c, (x —a)" has radius of convergenBe> 0 , then the functioff
defined by
fx) =Y5ocn(x—a)" = cg+c;(x—a) +c(x—a)2+ -
is differentiable, and

f'(x) =(cp+c;(x—a)+c,(x—a)2++) =c; + 2c,(x—a) + 3cz3(x—a)? + -

Or,

S (Erocn (x—@)") = Ty ncp(x — )"t

Similarly, the derivative for a power serid§x) = Y ,a, x" with a radius of

convergenceR > 0 is given by:
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! d (00} oo d [o0] -
f'(x) = = X pa, xh) = Yoo, (@n x") = X, nay x" 1
= a; + 2a,X + 3azx> + -
for |x| <R.
Remark 5:
1. The initial index of the power series changes wivengo from one derivative to
another. For instance, for first derivative thdiatiindex is 1 fori Crlpapgx™) =
Y, na,x""1 and since the derivative ofx° is 0. For second derivative the initial
index is 2 for% e nax™1) =¥%  n(n—1)a,x™ 2 and so on.
2. The power serie¥>, c,(x — a)" and its derivativeY ", nc,(x —a)*™! has the

same radius of convergencébut not necessarily the same interval of converge

Example 6: For each of the following power series, fifit{x) and "’ (x).
a. Zf‘f:o%
Solution: f(x) = Z?’f’:o%

’ d o X" n -
P60 = (Eol) = T () = Ty v = T iy

1’1 1 n

=Yne Y = Ynco; l
Also,

00 = (F @) = = (T s) = Ieom (5) = TS

b. Tre@"
Solution: f(x) = Z_o()"

) == (BnO") = Zon () = S & x!

and,

" d ’ d 0o - o d ( —1
00 = - (F/(9) = o (T grx™™) = Zim o (G x7") = B, o xn
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[e's) (_1)n- (X+2)n
C Yni o n

Solution: f(x) = Yo, D &+27

n.2n
, d o (DM (x+2)" w 4 (=DM (x+2)" o (DM n(x+2)n?!
Mo = (B ) = e (T ) = S T

(~DM. (x+2)""?
=Y

and,

- (x+2)" 71

' d , d o ( . d (_ n. n-1
P60 = 5 (F0) = 5 (Zim =) = B ()

(=)™ (n-1). (x+2)172
= 2;022 Zn -

3.4.2. Integration of Power Series

The power series can also be integrated term-log-tem an interval lying inside the
interval of convergence.
Theorem 3(Integration Theorem for a Power Series

If the power serie§;_, c,(x —a)" has radius of convergenBe> 0 , then the functioffi
defined by
f(x) = Y0 ogcn (x—a)" =co+ cy(x—a) + c,(x—a)? + -

Is integrable, and

Jfdx = [ Epcn (x—a) dx = Xio [ ep (x — a)dx = Xo—

n
n+1

(x—a)"! +k
where Kk is a constant.
Similarly, if a power serief(x) = Y72, c, X" has a radius of convergende> 0, then it
is integrable, and it is given by:

JECOdx = [ Eig o X" dx = T [ cp xdx = X0 x4+ k

Remark 6:

1. The power seriey -, c, (x —a)" and its integratio;;—, nC:1 (x —a)"*! has the

same radius of convergencbut not for interval of convergence.

2. Unlike to differentiation, the initial index of th@ower series do not change even
after integration is commenced.
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Example 7: For each of the following power series, fifif(x)dx.

a. Y, (x4 2)

Solution: f(x) = Z;‘;;l— x+2)"

ff(x)dx— on 1n—+1(x+2)ndX—Zn 1fi1( +2)ndX — Zg):l(x+n2)n +k

o (X—l)n+1
b. Zn:l n+1
] . _ o (X_l)n+1
Solution: f(x) = XL —
R ff(x)dx _ fZ -1+ dX — Zoo f(x—l)n+1 dx == Zoo (x—1)0+2 +k
n=1"__ . n=1 n=1 (n+1)(n+1)
(X 1)1’l+2
= Xn=1 nZ+3n+2 tk

Example 8: For each of the following power series, fifit(x) , f” (x) and [ f(x)dx

a. Yoo (n+ 1)x"
Solution: f(x) = Ypz(n + 1)x"

P = 2@, 0+ Dx") = 52— ((0 + Dx") = $2 n(n + Dx"!

and,
f() == (F'(®) =+ @iy n + Dx"Y) = B2, S (o + Dx")
=¥y ,n(n+1)(n—1)x"2
Also,
[fXdx = Y2 (n+Dx"dx=Y2, [(n+ Dx"dx = ¥, x" +k
b Zn 1E n®

n

n2

Solution: f(x) = Yoz 1%
’ d oo o d o — _
f'(x) =&(Zn=1;Xn )=Zn=1&(gxn2) = Zn:lg'nz' -1 = Zn 1510 Xn !
and,
f"(x) = i(f’(x)) = i(zw 5n an_l) =y i(Sn an_l)
dx dx \&n=1-"" n=1 4y ’

=Y 5n. (n% — 1).x"" 2
Also,
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2

n2+1 + k

[fdx = [R, 2 x™ dx =X, [2.xVdx = T,

n(n2+1)

n+1
Solution: f(x) = Yoo n+)1 X
(-1 o (D™ -
P = 5 (Ui Gx™) = i g () = Ei e
=S (- ke
and,
" _ d I _ d o) _ _n _ _1’1 n-1
£/ == (%) =+ (T, (- )" = x071) = T = (- 1)n = x)
0 -1 _
= T (—1)" S k02
Also,
[EG0dx = [ Zim, St dx = i, [ S0 xtdx = B, o x4k
d- Zn 0n2+1 Il+1
Solution: f(x) = Y22 0n2+1 .xh+l
’ o d 1
f'(x) = (Zn 0n2+1 ") :Zn=0&(n2+1 n+1) Xn= 0n2+1 x"
and,
" d 1 d d +1
09 = 5 (/6 = 5 (Bnoy x") = Zimog (")
. 1 _
:Zn 1n152:1).xn 1
Also,
o 1
JfGodx = [ X, 2+1 x"dx = B, [ XA = e S Tk
Example 9:

a. Find a power series representation for the fancin(1 + x), |x| < 1.
Solution:

From example 2, (3.1), we found the power serigmesion
1

o= l-x+x2 =+ =R -D L x[ <1,

Integrating this series term-by-term on the intef@ax], we find that
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In(1+x) =
xdx _ rXpao 2 _ 3 dte X X pTxn
01+t_fo[l t+t?—t3+ - ]Jdt =x —t+ - -t =3 - ,

In(1+t)

b. Represent the integrﬁg( dt as a power series expansion.

Solution.
In the previous problem (Example 1) we have fouhd power series expansion for

logarithmic function:
( 1)n+ 1tn t2 t3 t4—

In(1+t) =Y, — —— =ttt [t <1.

Then we can write:

In(1+t 1)n+ign-1 t, 2 e tr ¢

D e S R LR
Integratlng this series term-by-term on the inté[@ax], we obtain

xIn(1+t) . rx[, t & ¢ _ . xx x x* (—1)tixn
fO t dt_fo[l 213 4+]dt—x 22t 33Tt B n2

c. Obtain a power series representation for the exgiaaidunction €.
Solution.

Consider the series f(x) = Y%, = —=1 +x+ + + that converges for all x.

Differentiating it term-by-term we have

PO =W+ xSt Lm0t x4 = ()
dx dx 2! dx 3! 2!

Hence, the function f (x) satisfies the differahgquation f'=f. The general solution of

this equation has the form f (x) ="Gevhere c is a constant.

Substituting the initial value f (0) = 1, we finkdat c =1

Thus, we obtain the foIIowing power series expaméiw €*:
f(x) = Yo 0 —1+x+ + +

d. Find a power series expansion for the hyperbotie fiinction sinh x.
Solution.
Since sinh x = (&+ €*)/2, we can use power series representations foand €*. In the
previous example we found the formula

eX=Z;'1°0 ~ 1+x+ + +
Substituting — x for x, we get

e~ X 22;?:0(_’() :Zgo_om:l x4+ X4

n! - n! 2! 3!

Then the expansion for the hyperbolic sine funchias the form:
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. _eX—e™*  1[qe X" o (1" 1 x2  x3 x?
sinhx = 2 _E[Zn=0;_2n=0 Y ]—E[(1+X+Z+;+"‘)—(1—X+Z—
X3

_ 1 X3 XS _ ﬁ X_S L . X2n+1
_2[2(X+ TR )] R ETIT _Z“=0(2n+1)!
Exercise 3.4

1. For each of the following power series, fifidx) , f"(x) and [ f(x)dx .

af(x) =Y2,10"x"  b.f(x) = 3o, T xn C.f(x) = X%, x"

n

d.f() =2, n"x"  ef(x) =X, Vn.VntLx" ff(x)=
AR R
2. If the radius of convergence of the power se}¥s ,c, .x" is 10, what is the

radius of convergence of the serigg_,n.c, .x" 1 ?Zﬁﬂﬂ X1 2 Why ?

3.5. Taylor series and Maclaurin series

Overview

In this section we will discuss methods for findipgwer series for derivatives and
integrals of functions, and we will also discusagbical methods for finding Taylor series

that can be used in situations where it is difficulimpossible to find the series directly.

Section objective:

After you complete the study of this subtopic, yhould be able to:
= distinguish Taylor and Maclaurin series;
= find Taylor series of a function;
= find Maclaurin series of a function.
When a function is written in the form an infingeries, it is said to be ‘expanded’ in an

infinite series. This series represents all vahkfesin the interval of convergence.

For the function, the infinite series is:

fx) =Y gcn (x—a)" =co+c;(x—a) + c,(x —a)? + -
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or,
f(x) = Yoo Cn X" =Co + X + %% + -
The functionf(x) has the following properties of a polynomial.

» Itis continuous with the interval of convergentiee(e is no break in its graph).
» In series form, the function can be added, sulddhenultiplied or divided term by
term.

» |f f(x) is differentiable, then the series can be difféated term by term.

Two common series representing expansions are thelaMrin series and the Taylor
series. In these series, successive derivativesilaea and the coefficients can be obtained

If a function f (x) has continuous derivatives wp(h + 1)th order, then this function can

be expanded in the following form:

—a)n 2 N —)N
(00 = 550 (@) S = () + f/(a) (x — @) + “QO .y D@ODT,

n!
fn+1(E) (X_a)n+1

whereR,, , the remainder after n+1 terms, is giverRyy= Y

,a<i<x.

= When this expansion converges over a certain rahge that islim,_,., R, = 0,

then the expansion is call@aylor seriesof f (x) about a, that is,

f(x) = Xntof"(a )(X a) =f(a) +f'(@)(x—a) + M 4oy D@

n!

is called Taylor series of f (x) abaut
» If a=0,the Taylor series is called Maclaurin seriest tha

£’ (O)X f“(O)X

f(x) = Y> 0f“(O)— =f0)+f'(0)x+——+ -+ ——
Is called Maclaurin seriesfigk) or Taylor series of f (x) aboat= 0.
Theorem 4:1f f has a power series representatioa athat is, if f(x) = Y7y c, (X —

a)", |x—al <R, then its coefficients are given ly, = f (a) .

Proof: Supposd is any function that can be represented by a peemes.
1) fx) =Y ocn(x—a)"= ¢+ q(x—a) +c(x—a)? +cz3(x—a) +

= f(a) = ¢, = 0!¢,
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2) Take the first derivative of each term:
f'(x) = X5 ncp(x—a)" !t = ¢, +2c,(x—a) + 3cz(x —a)? +4c,(x—a)® +

=f'@=c¢=1¢
3) Take the second derivative of each term:
f"x) =Y ,n.(n—1).¢cy.(x—a)"» 2 = 2¢c, + 2.3c3(x —a) + 3.4.co(x —
a)> +4.5.cs(x—a)d + ..
= f""(@) = 2c, = 2!lc,
4) Take the third derivative of each term:
f"(x) =X .n(n—1).(n—2).c, . (x —a)" 3 = 2.3¢c5 + 2.3.4¢,(x —a) +
3.4.5.cs(x —a)? + 4.5.6.c4(x —a)d + ...
= f""(a) = 2.3c3 =3¢y
5) Take the4™ derivative of each term:
f*(x) = Xazan(n — D - 2)(n — 3)c, x —a)*™*
=2.3.4.cqy +2.3.45.cs(x —a) + 3.4.5.6.c5(x —a)? + 4.5.6.7.c,(x —
a)d + ...
= f*(@) = 2.3.4.c, = 4!c,
If we continue to differentiate, we get
fP(x) =nlc, + M+ D! cppx+ (n+ 2)! cpyox? .
From this, we obtain:
f*(a) = 2.34..n.c, =nlc,

C))
n!

Solving for ¢, , we obtairc,, =

Definition 5(Taylor series): If f has a power series representation at, then any

HC))
n!

expression of the form: f(x) = Xneo (x—a)" =f(a) + % (x—a) +

L@ (x—a)?+ L® .(x—a)3®+ .-+ is called the Taylor series of the functicat a .
2! 3!

f’(O) f”(O) X2 + f’”(o)

If a=0 , thenf(x) = T8, 2 .x" = £(0) + -2 .x + -2 © x4 s

called the Maclaurin series.
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Remark 7:

1. If a function has Taylor series, then the functionst be infinitely differentiable.
But not the converse, there are functions whichremeitely differentiable but does
not have Taylor series.

2. To represenf(x) as a sum of power series (r— a) or Taylor Series ifx — a),
we need to consider the following steps:

Stepl Compute all the derivativé8(a), n = 0,1,2,3,4, ... wheref°(a) = f(a).
If these derivatives does not all exifx) is not the sum of a power series in a
power of (x —a) .
Step2: Write down the Taylor series €fx) at x =a .
Example 10:
1. Given the functiorf(x) = e*, then find the
i. Taylor seriesab = 2.
ii.  Maclaurin series.
Solution:

i. We havef(x) = e* and by definition the Taylor seriesaatis f(x) =
(@

Yo (x —a)".
Stepl: Compute all the derivativé$(a), n=10,1,2,3,...
f'x) = f"(x) =+ = f2(x) = €&
= f%a) = f"(2) = e? forn=0,1,2,3,..
Step2: Write down the Taylor series €fx) at x =a .
f(a)

) = Tio 2 (x —a)"

_ , f”(a) flll(a)
=f@+f@.x-a+—=.x-a)’+ = .(x—a)’ +

fII (2)

2!

(x—22+ 22 x -2+

= f(2) + £'(2). (x— 2) +
=+l (x—2) 4T . (x—22+ S .(x=2)F o of = NS . (x—2)°

2
Therefore, the Taylor serié&) = e* at x =2 is ¥ = Z;‘;O% (x—2)" forallx.

ii. Given f(x) = e*, thenf®(x) = e = f*(0)= e’ =1 foralln.
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Therefore, the Taylor series representatiofaih = 0 (called Maclaurin series) is

S0t xn = we D =1 ex D 4D L
= e* = 1+X+);—2! +);—3!+
Remark 8: We have two power series representatioreforthat is, the Maclaurin series
and the Taylor series at= 2 . This implies Taylor series is not unique andhities with
the centrea.
2. Find the Maclaurin series and Taylor series offttlewing functions
i. f(x) =sinx at a :g
Solution:
Stepl: Compute all the derivative, i£(0), n=0,1,2,3,4,...
f(x) = sinx = f(0) =0,
f'(x) = cosx = f'(0)=1,
f"(x) = —sinx = f”"(0)=0,
f""(x) = —cosx = f""(0)=-1.
Again this numbers will be repeated,
f*(x) =sinx = f*(0) =0
f5(x) =cosx = f°(0) =1
fé(x) = —sinx = f¢(0) =0
f7(x) = —cosx = f7(0) = -1
Since the derivative repeat in a cycle of four,

a) The Maclaurin series is given by
n 2 3
f(x) = Do —2x™ = £(0) + £/ (0)x + —2x% + 253 4+

3 5
=0+x+0-=40-X 4 ..
3! 5!

3 5 7
X X X

= X——+———+..-
3! 5! 7!

2n+1

= T =

" (2n+1)!

b) The Taylor series at = g
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Stepl:Compute all the derivatives at i.e. f*(a), n=0,1,2,3, ..
f(%) = sin® =1

£’ (g) = cos(g) =0
()

£ G) = —cos(g) =0

Since the derivatives repeat in a cycle of fous, isspective coefficients faf?, 5t 6th

—sin(g) =-1

and7t™ derivatives are 1, 0, -1, 0.

The Taylor series at is given by

f(x) = Zf;ofn—(?) .(x—a)*=f(a) + f'(a).(x— a) +f22(—?). x—a)?+ @.(X— a)d+--

n! !

Sincea = g . we have

M)

() = Tio—2 . (x— D"

= f(3)+f’(—g)(x—f)+ @.(x—§)2+ @.(x—g)3+

2 1! 2

_ et )t )t
Y 4 el 8!
o (X_g)2n+1
— _13\n
= Znmo(—D" (2n+1)!
il Ccos X

Solution:

Stepl: Compute all the derivativé"(0),n=0,1,2,3,4, ...
f(x) =cosx = f(0)=1

f'(x) = —sinx = f'(0)=0

f"(x) = —cosx = f"(0) =-1

f""(x) =sinx = f"'(0) =0

Again this numbers will be repeated

f*(x) = cosx = f*(0) =1

f5(x) = —sinx = f>(0) =0

f(x) = —cosx = f%(0) = -1
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f7(x) =sinx = f7(0) =0

Since the derivative repeat in a cycle of four, Melaurin series is given by

n 2 3
() = B0 2 .x™ = £(0) + F(0).x + 2. x% + o2 x4 o

= 1_);_2!4- Z—T —};—6!+...

= To(-1" . 2
Or we know that cos x = %(sin x) and sinx = ¥ ,(—1)" . ()2(::11)!
= % (X—);—3!+);—?—X7—T+ )
= 1—);—2!+Z—T—z—6'+

2n
=Y (—=D". % = CcOS X

a. f(x) =x.cosx

Solution: So far we know the Maclaurin series foss x which is given by

f(x) = cosx = Yo(—1)". (Z:;!
Thenx.cosx = x. Yoo (—1)" . (Xz;nn),
= TR (-D .
= T (-1 i
b. f(x) = —

Solution:

Stepl: Compute all the derivativi&(0),n =0,1,2,3,4, ...
__1 _

f(x) = — = f(0)=1

1

F@) = = PO =1

f(x) = (1_2X)3 = £(0) = 2
£ (x) = (1_6X)4 = f(0) = 6
£4(x) =(1f‘j()5 = *(0) = 24
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5 _ 120 5 _
() = 2222 = 15(0) = 120

Step2: Write out the Maclaurin series
00 = T20 " xm = £(0) + £/(0). x + —2.x2 4 EO 3y .

= 1+x+2 4 & 20 +125°,X

+ o
= 14+x+x2+x3+x*+
= Ynco X"
Thus — = Zi2ox"
il G0 = —
Solution:
Stepl: Compute all the derivativé”(0),n=1,2,3,4, ...
fx) =— = f(0)=1

f'(x) = 1:(2 = f'(0) = -1

f'"(x) = (1+ E = {"”(0) =2
700 = (1:- o f"(0) = -
f*(x) = )5 = f4(0) = 24
f5(x) = (1+X)6 = f>(0) = —120
Step2: Write out the Maclaurin series
1 o (0 f2(0 3(0
f(x) = = = B o =2 .x" = (0) + £(0).x + — ” 2 4 %).xu---
2x2 6x3 24x*  120x°
=l=x+5 - 5+ 5=
=1-x+x>-x>+x*—-x>+ -
= Xnzo X"
Thus ﬁ = Yoo(=D" x"
Or,
fx) = —= — )=Zf1°=0 (—x)" = 1—-x+x2—x3+x*—x>+-

1-(—x
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Remark 9: Taylor series enables us to integrate functiorss e could not integrate
Example 11:Evaluatef e ™**dx
Solution: It is impossible to integratﬁe‘xzdx by any one of the methods. Thus we first

find the Maclaurin series fdx) = e’ by any of the methods we have. Hence we need
to device another mechanism by which we can integtas and such functions and for

this we have the Maclaurin series. Now we firstfthe Maclaurin series for the function

f(x) = e .

) _ . (_XZ )n _ . (—l)n.in _ 4- XG X8 X10
= €7 =Xz n! = Zn=o n! - 1__+_l__+_|__+
Now integrate term by term

2 _ 1) X ( 1)11 2n ( 1)11 2n+1
feXdX—ono o d—Znof d—Znon,(Znﬂ)

%5

=x—T i
Example 12:find the Taylor series fdi(x) centered at the given valuesao{Assume
thatf has a power series representation)
a fx)=1+x+x* ,a=2
Solution: To find the Taylor series dfx) = 1 + x + x>
Stepl:Compute all the derivativé§(a), n=0,1,2,3
fx)=1+x+x*> =>f2)=7
= fx)=1+2x= f'(2) =5
= f"x)=2 = "(2)= 2
f’(x) =0 whenn >3 = f*(2) =0 whenn >3

Step2:write down the Taylor series €fx) ata = 2

= f(x) = 00— . (x— )"

= (D +1@. - D +2 x-22+ E2 x-2)* +
=745.G-2+= . (x—2)%+

= 7+5@x—2)+ (x—2)2
b. f{x) =x3 ,a=-1
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Solution: To find the Taylor series dfx) = x3
Stepl:Compute all the derivativé§(a), n=0,1,2,3
f(x) =x3 = f(-1)=-1

= f'(x) =3x* = f'(-1) =3

= f"x)=6x = f'"(-1) = -6

= f"x)=6 = ""(-1)= 6

fi(x) =0 whenn >4 = f?(—1) =0 whenn >4

Step2:write down the Taylor series di{x) at a = —1

= f(x) = NiZo 2 . (x+ 1)

= f(—1) +f'(-1).(x+ 1) +f”(2—:1) (x+ 1%+ fmg—"l) (x+ D3+
=—-14+3.x+1)+3x+2)*+ x+1)3

c. fx)=e* ,a=3
Solution:

We havef(x) = e* and by definition the Taylor seriesaat 3 is f(x) =

o
T2 (x—a)"
Step 1:Compute all the derivativé8§(a), n=0,1,2,3, ...
= f'(x)=f"x) = = f*(x) = ¥

= fPa) = M3)= &

Step2:write down the Taylor series éfx) ata = 3
o M

= f(x) = T2 . (x— a)"

= f@ +F@. -+ -2 x— )2+ T@ -2yt 4

f3) +£'(3). (x—3) + =2 . (x =32+ —2 . (x—3)° + ..

3 3
=+l (x=3)+= (x—3)7+ 5 . (x=3)%+ -
3
= Yo - (x=3)"

e3
= e = Z;‘;oa .(x=3)" for all x
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Example 13:
a) Find the Maclaurin series foros? x.

Solution.
1+4cos 2x
2
(_l)nXZn
(2n)!

We use the trigonometric identity cos? x =

Since the Maclaurin series for cos XJ%, , We can write:

(=DrEx)"
(2n)!

(_1)n22nX2n
(2n)!

= Z?lozo

CoS2X =)0’

Therefore

(_1)n22nX2n
(2n)!
(_1)1'1221'1XZH

1+C0S2X 2+Z?=1T

cos? x = "t > =1+Xn

(_1)n22nX2n

14+cos2x=14+Y;., !

=2+ X0

(_1)n22n—1X2n

(2n)!

b) Obtain the Taylor series fé{x) = 3x* — 6x + 5 around the point x = 1.
Solution.
Compute the derivatives:
f'(x) =6x—6, f"(x) =6 , f"(x) = 0

As can be seeffi®(x) = 0 forall n> 3. Then, for x = 1, we get
f(1) =2, f'(1) =0, f"(x) =6.
Hence, the Taylor expansion for the given functgon

—1)n —_1)2
f(x) = Do 1 (1) o = 2+ 2 =2 4 3(x— 1)?

c) Find the Maclaurin series for%e k is a real number.
Solution.
Calculate the derivatives:
f'(x) = ()’ = keK*, f(x) = (ke!)" = k?eX*, ... f1(x) = k"el* |
Then, at x = 0 we have
f(0) =e% =1, f'(0) =ke* =k, f"(0) = k?e® = k?, f1(0) = k"e? = k"
Hence, the Maclaurin expansion for the given fuorcts

D N (1) E R T T
d. Find the Taylor series of the cubic functiof about x = 2.
Solution:
Denote f(x) = x3. Then

f'(x) = (x3) =3x%, f"(x)=03Bx?"=6x f"(x)=(6x) =6, f*(x) =0,

knxn

n!
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and furtherf™(x) = 0 for all n> 4.

Respectively, at the point x = 2, we have

f2)=8 (=12, 'Q)=12, ") =6.

Hence, the Taylor series expansion for the cubictian is given by the expression

12(x—-2)? n 6(x—2)3
2! 3!

X' = 32, (2) 2 =8+ 12(x - 2) +
6(x—2)%+ (x—2)3

e. Determine the Maclaurin series féfx) = V1 + x.
Solution.

=8+ 12(x—2) +

Using the binomial series found in the previousnegie and substitutingy = % we get
1 1

1 1

1) (3-1)G-2)

2 X2_|_2(2 )2 X3+"'
2! 3!

x 1x?  13x3 135x*

=14+-—=—
2 2221 233! 244)

1

\/1+x=(1+x)1/2=1+§+5(

1 1.3.5.(2n—-3)x"
20p! ’

+ -+ (=D

2
Keeping only the first three terms, we can writis 8eries asy1 +x ~ 1+ g — %

Exercise 3.5

1. If f(x) =Yn—oCn . (x —2)" for all n, then what is the formula for
a. Cg b-Cg Ccp
2. If f"(0) =(n+ 1)! forall n=1,23,..., then find the Maclaurin series f¢r

and its radius of convergence?
3. Find the Taylor series fof centered at 4 iff(4) = —2-™

. What is the radius
3" (n+1)

of convergence of the Taylor series ?
4. Find the Taylor series forf(x) centered at the given values of a
a f(x)=5+2x+3x2+x3+x* ; a=2
b. f(x) =cosx ; a=m
C. f(x)=Inx ; a=2
d. f(x) =sinx ; a:”/z
e. fx) =x7%2; a=1
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3.6. Taylor polynomial and its application

Overview

In this section we will discuss methods for findifigylor polynomial and use this to
approximate Taylor polynomial function

Section objective:

After you complete the study of this subtopic, yhould be able to:

= define Taylor polynomial,

» find Taylor polynomial,

= use Taylor Polynomial to approximate a function.
Taylor polynomials are applicable in approximatfogctions because polynomials are the
simplest of functions.

Definition 6: Suppose thdl(x) is equal to the sum of its Taylor seriea athat is,
f(x) = Xn=o

P,(x) which is called then™" degree Taylor polynomial of ata is given by

f (f‘) .(x—a)", then itsn®™ - partial sum of the Taylor series denoted by

n

P(0) = "2 (x—a)! = (@) + F@(x — ) + =2 (x—a)2 + - + T2 (x— )"

i!
Thusp,(x) can be used as an approximatiofi iee.f(x) = p,(x) .
Remark 10:

fi .
L pa(¥) = I, =2 . (x — a)'

Whenn =1, p;(x) =f(a) +f'(a).(x —a)

Whenn=2, p,(x) = f(@) +f'(a). (x — a) + —2 (x - a)?

2. When using a Taylor polynomial, to approximate a functiofi, we have to ask
the question how good an approximation is it . fisveer this we need to look at
the absolute value of the remainder:

IRn(| = [f(x) — Ta(x)
Asn - oo, |[R,(x)] = o and p,(x) = f(X) .
Example 14:
1. Approximate the functiof(x) = i/x by a Taylor polynomial of degréeata = 8
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Solution: f(x) = ¥x = x/3
Stepl: Compute the derivativEé'(a) untiln = 2
fx) =x/3 =£(8) =8"3=2

! = —1 ! = —1 = i
f (X) - 3x2/3 =f (8) 3.(82/3) 12
12 —_ -2 14 -2 __1
60 = ox’/s = @ = 9. (8% 144

Thus the second degree Taylor polynomial is

p2(0 = 5202 L (x —8)! = £(8) +I'(8) (x — 8) + 2 (x — 8)?
1
= 2+—(X—8)—m ~(x—8)?
_ 1L _ = _ 2
= 2+12(X 8) zss(X 8)
Thus the desired approximationis& = p,(x) =2 +5 (x —-8) —— (x —8)2

288

2. Find the Taylor polynomigb, (x) for the functiorf at the numbex .
a. f(x) =sinx at a=g ,n=3

Solution:
Compute all the derivativef®(0), n=1,2,3

f(x) = sinx = f(g) = sin (g) =%

V3
2

f'(x) =cosx = f’ (g) = cos(g) =
f"(x) = —sinx = " (g) = —sin (g) = —%

f'""(x) = —cosx = "’ (E) = — Cos(g) = _‘/;

Thus the third Taylor polynomial is

pr0 = Ta - = 1)1 (3) (- 8) ¢ e e et

_ 1, E(X ﬂ)_lﬁ _VE g’
2 2 2 2! 2 3!

6
Hence the desired approximation is

. 1. V3 1 V3
sinx = py(9) =7+ 3 (x=7) =7 &x=D* ~37 G-’

b. f(x)=e¢* ,a=2 andn=3
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Solution: We havef(x) = e* and by definition the Taylor series at= 2 is f(x) =

N0t (x—a).

Stepl: Compute all the derivativé§(a), n=0,1,2,3
= f'x)=f"x)=- = f(x) = e forall x.

= ") = f"(2) = e? foralln.

Step2: Write down the Taylor polynomial ¢fx) at a = 2

= f(x) = X2, "2 (x—a)n

n!

= f(a)+f’(a).(x—a)+¥ (x—a)?+ % .(x—a)3
(2)

2!

= (@D +1'@. - +52 (x—22+ E&  x-2)?

Thus the third Taylor polynomial is

(x-2)3

o2
ps(x) =e? + e?(x — 2) + e? % + e? -

—2)2 —_2)3
= ps() =e2(1+ (x—2) + E2 4 B2,

—2)2 _2)3
= ¥ = p;(x) =e?(1+ x—2) + (XZZ) + (X:) )

c. f(x)=v3+x%? ; a=1 andn=2
Solution: f(x) =v3+ x2 = f(1) =2

() ==z = (1) =7

" _ 3 " _3
"0 = Grovme = =3

3 (x—1)2

Thus p,(x) =2+ =.(x—1) + 52

N |-

w

=2+ %.(x—1)+ (x — 1)2

16 °
=V3+x%2 zp,x)=2+ %.(X—1)+ % (x—1)2
d. Express the polynomial(x) = 2.x3 — 9.x%? + 11.x — 1 as a polynomial
in(x—2).
Solution: we havea =2 andf(x) = 2.x3— 9.x*+ 11.x—1
= f(2)=1 andf'(x) = 6.x>— 18.x+ 11
=f'(2)=-1
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f"(x) = 12.x— 18

= f"(2)=6
f""(x) =12
= f""(2) = 12

In generaf™(x) = 0 foralln >4 = f"(2) =0 foralln >4
Thereforef(x) =1 — (x—2) + % (x—2)%+ % (x—2)3
=1—- x—2)+ 3.(x—2)*+ 2 (x—2)3.
Example 15:
1. Find the Taylor series dfabout a

a. f(x) =4x*-2x+1 ,a=0, 3
Solution: f(x) =4x*>—-2x+1 =f0) =1
f'(x) =8x—2 =1f'(0)=-2
f"(x) =8 =f"(0)=38
In generaf™(x) = 0 foralln >3 = f?(0) =0 forall n >3
£(x) = 1—2x+%= 1— 2x + 4x2

Similarly by the same method we obt&8) = 31, f'(3) =22, f"(3) =8

Y
:>f(x)=31+22(x—3)+¥=31+22(x—3)+4(x—3)2

b. f(x)=§ Ca=-1
Solution: f(x) =§ = f(—1) = —1
£ (x) =;—21 = f'(-1) = -1

£ (x) = i = f'(-1) = -2

fIII(X) — X_f = f”l(_l) =—6

f4(x) = % = f4(-1) = —24

—120
x6

f5(x) = = f>(-1) = —120
In generalf®(—1) = —n!

Thus,
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2(x+1)%2  6(x+1)% 24(x+1)*
2 T s a  t

fx) =—-1-(x+1) -
=—1-+D-E+D*-+1D>-(x+D*+-
c. f(x)=sin2x , a=0
Solution: f(x) = sin 2x = f(0) =sin0 =0

f'(x) = 2 cos2x = f'(0)=2.cos0 =2
f""(x) = —4 sin 2x = "”"(0) = —4.sin0=0
f3(x) = —8 cos 2x = f3(0) = —8.cos0 = -8
f*(x) = 16 sin 2x = f*(0) =16.sin0 =0
f>(x) = 32 cos 2x = £>(0) = 32.cos0 = 32
fé(x) = —64 sin 2x = f°(0) = —64.sin0 =0
f7(x) = —128 cos 2x = f7(0) = —128.cos 0 = —128
Thus,
_ 8x3 x> x7 _ . _ (2X)2n+1
f(X) = 2x —?+ 323— 128 ; + - = Zn=0( 1)n '—(2n+1)!
d. fx)=+vx , a=1
Solution: f(x) = Vx= x/2 = f(1) =1
1 1 I} 1
f(X)ZZ_& = f(l):E
/() == .x /2 = (1) ==
£3(x) =Z .X_S/Z = £3(1) =§
) ==2.x 2 = (1) ==
f5(x) =2 .x /2 = (1) =2
Thus,
f(x) =1+ 1( _1)_1 (x-1)? 3 (x-1)® 15 (x—1)4+ 105 (x-1)°
X) = 2 X Y g 3l 16" 4l 32" sl

2. If f(x) =sin(x3), then find f1°(0) ?

Solution: so far we have the Maclaurin series for

3
. X
f(x)—smx—x—;+a—;+---
9 15 21
w3y = w3 _ X X7 X .
Now sin(x®) = x o T -t
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f15 (0).X15 . X15

151 from which we obtairf*s (0) = = .

atx=07?

3. Find the sixth derivative of(x) = —

Solution: If we try to differentiate directly, we will be pelessly bogged down at about
the third derivative; consequently we need anothethod by which we can get the sixth

derivative of the function and for this we have Maclaurin series.

. . . 1
Since the Maclaurin series f(Bl-I: =1—-x+x% - x3+x*—x5+ ...

1
Then we have—; =1—-x*+ x*—x®+x8—x10+ ..

6
Now f%% = —x6

£6(0) = —6! = =720
4. If f*(0)=(m+1)!for n=1,2,3,..., then find the Maclaurin series fér
Solution: f(x) = Yo oc,. (x—a)" buta=0

fr0) _ (m+1)!
n! n! -

n+1

= f(x) = YproCn- X" Wwhere ¢, =

= f(x) = Yozo(n+1). x"

Exercise 3.6

1. Find the Taylor polynomial up to degree 5 for
i. f(x) =cosx centerata=0
i. f(x) =§ center ata = 1
2. Letf(x) =x®—3x*+2x—1
a. Find the fifth Taylor polynomial of about O ?
b. Find the fourth Taylor polynomial of about -1 ?
c. Find the Taylor series of about -1 ?
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Unit Summary:

1. A series of the form
ag+a;x+axt+azx3+-+apx+ - or Yo apx®
is called a power seriesior a power series.
= A more generalized form of a power series i§x0f a), that is, an infinite series of
the form
agta;(x—a)+ta(x—a)+--+a(x—a)+- or Ysa,(x—a)
is called a power series (g — a).
If a = 0, this general power series becomes a power saenes
2. A power series is said to convergegif the series of real numbeys.,a,x"
converges ak ; o,
A power series is said to be convergent in a set i@al numbers if it is convergent
for every real numbet in D.
3. Let ¥ ,a,.x" be a power series, then exactly one of the faligwconditions
hold
i. The power series,_,a,.x" converges only ak = 0. Example},;_,n!.x"
ii. The power serieg-a,.x" converges for alk . Example:Z;‘f;OXn—T
iii. There exists a positive real numtResuch that the power serig§-, a,.x"
» Converges for alkk with |[x| < R , thatis,_ R<x < R.
» Diverges for alkk with |x| > R.
4. The algebraic operation on power series are detbeani
a. If ¥o_,c,.s" converges, thep,_,c, .x"
= Converges absolutely fox| < |s|
= Diverges whenx| > |s|
b. If Yor,c,.s" diverges, thed ¢, .x"
= Converges absolutely fox| < |s|

= Diverges forx| > |s|
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5. Differentiation Theorem for Power Series If the power serie3;;_,c, (x —a)"
has radius of convergenBe> 0 , then the functiofi defined by
fx) =X2 gcn(x—a)" = cg+ci(x—a) +c(x—a)2+ -
is differentiable, and
f'x) =(cp+cx—a)+c,(x—a)* +) =c; +2c,(x—a) + 3cs(x—a)? + -

Or,

S (Erocn (x—@)") = Ty ncy(x — )"t

Similarly, the derivative for a power serie§x) = Y1 ,a, x® with a radius of
convergenceR > 0 is given by:
F(0) =+ (Tiloan x") = Zilo(a x7) = X2y na, x
= a; + 2a,X + 3azx> + -
6. Integration Theorem for a Power Series|f the power serie¥ ., c,(x —a)"
has radius of convergenBe> 0 , then the functiofi defined by
f(x) =Yelocn (x—a)" =cy+ c;(x—a) + c,(x—a)? + -

Is integrable, and
[fX)dx = [T pcn x—a)"dx = T2, [ ¢y (x—a)"dx = 32— (x—a)"*! + k

n+1

where Kk is a constant.
Similarly, if a power serief(x) = Y72, ¢, X" has a radius of convergende> 0, then it

Is integrable, and it is given by:
Cn

JEGOdx = [ E20 ¢ X" dx = Tig f e xMdx = T x4k

7. If f has a power series representatioa athat is, if f(x) = Yoy c, (x —a)",
. - . _ f(a)
|x — al] < R, then its coefficients are given ly, = -
8. Taylor series If f has a power series representatiomngtthen any expression of

the form: () = S22 "2 . (x—a)" = f(@) + "2 . (x —a) + =2 . (x— ) +

% .(x—a)®+ -+ is called the Taylor series of the functicat a .
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f1(0) f(0) '’ (0 ' (0
If a=0 |, thenf(x) = 2;0207 XM= f(O) +T .X +T) .x2 +T) X3+
is called the Maclaurin series.

9. Some Useful Maclaurin Series

n 2 3
X _ voo X% _ x x
= e —Zn=0§—1+x+;+§+---

R e
. sinxzzlﬁo%:x—’;—?+§_%+...
. coshxzz;?zo%:1+x2—?+§+§+...

. sinhx=2§=o%=x+§+§+%+...

10.Taylor polynomial: Taylor polynomials are applicable in approximgtiiunctions

because polynomials are the simplest of functions.

)
n!

If f(x) is equal to the sum of its Taylor seriesaathat is,f(x) = Y72, (x =
a)" , then
= Then'™ - partial sum of the Taylor series, denotedPpgx), is called the

n'™® degree Taylor polynomial of ata and is given by

pn(®) = ?:ofi(—a) (x—a)l =f@)+f'(@)x—a) +@ (x—a)® + -+

il !

f'(a)
ot (x—a)"

* p,(x) can be used as an approximatiofi ie.f(x) = p,(x) .

+
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Miscellaneous Exercises

1. For each of the following series, find the radaisonvergence(R) and the interval of

Convergence
0 (_1)71.. x" 0 (_1)71.. x2m 0 (_1)n- (x+2)n
- Xn=0%m . tnn b Ym0 G~ D T
.y nl @Qx—1)" eyr,—* _ £y (=1)" (nn)?. x"
Fem=0 en=1,46..(2n) Tam=2 " n2
3n h (n') 2n Tl
OXm= 052n Y= 0 21 X i Y= o(Zn)' )

2.Find f'(x), f'(x) and f(x)dx for the following power series

a. f(x) = Siizn . bf() =T, Zam o f() = B, -

n+1

dfO) =T, (DN e f0=%io(3) T

(x_l)n+1

n+1

3.1f Xn—oc, 4™ is convergent, then does it follow that the folluyvseries are

convergent?
a. Ynp—oCn -(=2)" bYn=ocn - (=0
4. Suppose thap;_,c, .x™ converges wher = —4 and diverges wherr = 6 . What
can be said about the convergence or diverg@fthe following series ?
A Yp=0Cn  bXp=ocn .8"  C.X7-oCn . (=3)" d.Xn=0 (D" ¢, .9"
5.1f k is a positive integer, then find the radius ofiwergence of the series

(nhk. xm

(kn)! *

6. Suppose that the serigs,_, c, .x™ has radius of convergence 2 and the series
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Ym=0dn .x™ has radius of convergence 3, what is the radfusavergence of the series

m=o(Cp +dy) . x™?

7. Suppose that the radius of convergence of the psevies)._, ¢, .x™ is R, what is the

radius of convergence of the power serfgé._, c,, .x?" ?

8. If the radius of convergence of the power seligs, ¢, .x™ is 10, what is the radius of
convergence of the serigg;_; n.c, .x""! ?X5_;— x™*1 2 Why ?

9.If f(x) =XYp—oCn -(x —2)" for all n, then what is the formula for
e. Cs b59 CCn

10. If f™(0) = (n+ 1)! forall n =1,2,3,..., then find the Maclaurin series fgrand

its radius of convergence.

=D". n!

11.Find the Taylor series fof centered at 4 iff"(4) = o (n+1.) . What is the radius of

convergence of the Taylor series ?
12.Find the Taylor series forf(x) centered at the given values of a
f(xX)=5+2x+3x2+x3+x* ; a=2

. fx)=Inx ; a=2

a
b. b. f(x) =cosx ; a=n
C
d. c f(x) =sinx ; a:”/z

®

e.f(x) =x"%; a=1
13.Find the Taylor polynomial up to degree 5 for

i. f(x) =cosx centerata=0.

i. f(x) =% center ata = 1.
14.Let f(x) =x°—3x*+2x—1

a. Find the fifth Taylor polynomial of about 0.
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b. Find the fourth Taylor polynomial of about -1.

c. Find the Taylor series of about -1.

15.Find the respective derivative of the followingdtions

a. f©(0) where f(x) = — ? d. fU9(0) where f(x) = sin(x*) ?
b. f®(0) where f(x) = 1_;3 ? e. f®(0) where f(x) = — ?
c. f©(0) wheref(x) =x.e*? f. £®(0) where f(x) = cos(x?) ?
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Chapter Four

Differential calculus of function of several variables

Introduction

In this chapter we consider the integral of a fiorcof two variables (x, y) over a region

in the plane and the integral of a function of éhkariablesf(x,y,z) over a region in
space. These integrals are called multiple integeald are defined as the limit of
approximating Riemann sums, much like the singlgariable integrals. We can use
multiple integrals to calculate quantities thatyaver two or three dimensions, such as the
total mass or the angular momentum of an objeataofing density and the volumes of
solids with general curved boundaries like voluraétyperspheres. In addition, we can

use double and triple integrals to compute proliads| average temperature and so on.

We will see that polar coordinates are useful imgpoting double integrals over some
types of regions. In a similar way, we will intragutwo coordinate systems in three —
dimensional space which are cylindrical coordinated spherical coordinates that greatly

simplify the computation of triple integrals oveartain commonly occurring solid regions.

Unit Objectives:

On the completion of this unit, students shouldble to:
» Understand functions of several variables
* Find domain and range of function of several vdesb
= Sketch graphs of functions of several variables
* Find level curves of functions of several variables
* Find limits of functions of several variables
» Understand the idea of continuity in case of sdweraables
* Find partial derivatives
» Apply partial derivatives
» Find directional derivatives and gradients

» Find tangent planes to functions of several vaesbl
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» Understand tangent plane approximation
» Find relative extrema to functions of several Valea
= Understand the idea of Lagrange multiplier
4.1. Functions of Several variables
Overview
In this section we will see the definition of furacts of two and three variables, domains
and ranges of functions of two and three variabtes graphs of those functions, level

curves and level surfaces of functions.

Section objective:

After the completion of this section, successfutishts be able to:

= Define functions of two and three variables
» Find domain and range of functions of two and thiagables
= Find level curves and level surfaces of given fioms

Definition 4.1: A function f of two variabless a rule that assigns to each ordered pair of
real numbergx, y) in a setD a unique real number denoted fix, y). The set is the

domain off and its range is the set of values th&tkes on, that i4f(x,y)|(x, y)eD}.

Here, the variables andy areindependent variablesandf is thedependent variable

Example 1: For each of the following functions, evalui@,2) and find the domain.

a. flxy) =20 B.(x,y) = xIn(y? — x)
Solution:
a. f(3,2) = '33+_21+1 = g and

The expression fof makes sense if the denominator is not 0 andubetdy under the
square root sign is nonnegative. So the domaifi of

D={(ylx+y+1=0x=+1}
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x+y+1=0

{ 3
/ Vi
|

/

-

Figure 1 Domain of (x,y = —“’;Jr_ylﬂ)
b. £(3,2) =3In((2)2=3)=3In1=0and
Sinceln(y? — x) is defined only whey? — x > 0, that is,x < y?, the domain of is

D ={(x,y)|x < y*}

-y

0

Figure 2 Domain of (x,y = xIn(y? — x)

Example 2: Find the domain and range @fx, y) = \/9 — x% — y2.
Solution: The domain of is

D ={(,»I9-x*—y* 20} ={(x,y)|x* + y* < 9}
which is the disk with centg0,0) and radius 3 and the rangegois

{le =m, (x, y)eD}
Sincez is a positive square roat,> 0 and9 — x%2 — y?2 <9

= m <3
Therefore, the range gf is

{z|0<z<3}=1[03].
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PHFEy=9

(%]
(%)

Figure 3 Domain Qf(x,y = /9 — x2 — y?

4.1.1. Graphs

Definition 4.2: If f is a function of two variables with domdy then thegraph of f is the set

of all points(x, y, z) in R? such that = f(x,y) and(x,y) is inD.

Example 3: Sketch the graph of the functigf(x, y) = 6 — 3x — 2y.

Solution: The graph off has the equation= 6 — 3x — 2y, or3x + 2y + z = 6, which
represents a plane. To graph the plane we firdttfie intercepts.

Puttingy = z = 0 in the equation, we get= 2 as thex-intercept. Similarly, ther —
intercept is 3 and the— intercept is 6.

Therefore, the graph ¢f(x, y) = 6 — 3x — 2y is given below.

I (0, 03, &)

Figure 4
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Example 4: Sketch the graph of the functigrix, y) = /9 — x2 — y2.
Solution: The graph off has the equation= /9 — x2 — y2. We square both sides of

this equation to obtain? = 9 — x? — y?2, orx? + y2+z2? = 9, which represents a sphere
with center the origin and radius 3. But, siace 0, the graph of is just the top half of
the sphere as in figure 5 below.

_JHJ.EL 3)

- /

/ N
o
7

I
=0 |
[ sk = (0, 3, 0)
: Fa .

nuy %
X

Figure 5

4.1.2. Level curves

Definition 4.3:

1. Thelevel curves (contour curvespf a functionf of two variables are the curves
with equations (x, y) = k, wherek is a constant.
2. The set of points in the plane where a funcfipg y) has a constant value

f(x,y) = k is called a level curve ¢f. Herek is a constant.

Example 5: Sketch the level curves of the functiffx, y) = 6 — 3x — 2y for the values
k =-6,0,6 and12.
Solution: The level curves are

6—-3x—2y=kor3x+2y+(k—-6)=0
This is a family of lines with slope % The four particular level curves with= —6,0,6
and12 are:

3x+2y—12=0fork = —6

3x+2y—6=0fork=0
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3x+2y=0fork=6

3x +2y+ 6 =0fork =12,
They are sketched in Figure 6 and they are eqapHtged parallel lines because the graph

of fis a plane.

-y

“

Figure 6 Contour curves ¢fx,y) = 6 —3x — 2y

Example 6: Sketch the level curves of the function

glx,y) =9 —x2—y2fork =0,1,23.

Solution: The level curves are

JI9—x2—yZ=korx?+y2+(k*-9)=0

This is a family of concentric circles with cen{@0) and radius/9 — k2. The four

particular level curves witk = 0,1,2 and3 are:
x2+y2—=9=0fork=0
x?+y?—-8=0fork=1
x?+y?—5=0fork =2
x?+y?=0fork =3.
Therefore, the graph of these level curves is gindigure 7 below.
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Figure 7 Level curves gf(x,y) = /9 —x2 — y?

Functions of three variables

Definition 4.4: A function of three variables f, is a rule that assigns to each ordered

triple (x, v, z) in a domainDeR3 a unique real number denoted f, y, z).

Example 7: Find the domain off if

flx,y,z) =In(z—y) + xysinz
Solution: The expression fof (x, y, z) is defined as long as— y > 0. So, the domain of
fis

D ={(x,y,2)|z > y}
Remark: It's very difficult to visualize a functiofi of three variables by its graph, since
that would lie in a four-dimensional space. However do gain some insight into by

examining itdevel surfaces.

Definition 4.5: The set of pointsx(y, z) in space where a function of three independe

variables has a constant valfig, y, z) = k is called devel surfaceof f.

Example 8: Find the level surfaces of the function
f(x,y,2z) = x* + y? + z? for k = 1,4 and9.
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Solution: The level surfaces are

x% +y? + z% = k, wherek > 0.
This is a family of concentric spheres with radifis The three particular level surfaces
with k = 1,4 and9 are

x2+y?+z2—1=0fork =1

x2+y?+z2—4=0fork =4

x2+y?+z2-9=0fork =09.

Therefore, the graph of these level surfaces iergia figure 8 below.

Figure 8

Note 4.1:In general, dunction of n variablesis a rule that assigns a numbet

f (x4, %5, ..., xy) to @ann — tuple (x4, x5, ..., x,) Of real numbers.

Exercise 4.1

1. Find the domain and range of the following function
a. f(x,y,z)=41—-x2—y2—z2
b. f(x,y) =In(9 —x* —9y?)

c. fuy)=x+y

2. Sketch the graph of the following functions
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a. f(x,y) =10 —4x — 5y
b. f(x,y) =16 —x2 — 16y2
3. Sketch the level curve ffx,y) = /36 — 9x2 — 4y2

4. Find the level surfaces of the following functions
a. f(x,y,2) =x+3y+5z
b. f(x,vy,z) = x? + 3y? + 522
c. f(x,y,z) =x%—y%+2?

4.2. Limit and Continuity
Overview
In this section we study the definition of limitdanontinuity in case of functions of several

variables and will do different examples

Section objective:

After the completion of this section, successfutienhts be able to:

= Define limit and continuity

= Find limits of different functions

= Find points of continuity for different functions
4.2.1. Limit

Definition 4.6: Let f be a function of two variables whose domRimcludes points
arbitrarily close tda, b). Then, we say that the limit of(x, y) as(x,y) approaches

(a,b) is L and we write

limy )5 p) f(,y) = L

If for everye > 0 there is a correspondidg> 0 such that

If (x,y)eDand0 < /(x —a)?2 + (y —b)2 < § then|f(x,y) —L| < &
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Example 9: Flndllm(xy)_)(oo) . |f it exists.

Solution: We first observe that along the lime= 0, the function always has value 0 when
y # 0. Likewise, along the ling = 0 the function has value 0 provided# 0. So if the
limit does exist asx( y) approaches (0, 0), the value of the limit mus@b&o see if

this is true, we apply the definition of limit.

Lete > 0 be given, but arbitrary. We want to finda> 0 such that

If 0 <x2+y?2<34, then

4xy

—0|<e

2
= 0 < x2+y%<4, then::';;li2 <e¢

Sincey? < x? + y? we have that

2
M o M g1y = 4R < 4x2 y? < € (Sincex? < x% + y?)

x?+y? T y?
So if we choosé = ¢/, and let0 < /x? +y% < §, we get

4xy?

—0| < 4/xZ+yZ < 48

x2+y?

= 4(8/4) =&
It follows from the definition that

4xy?

iMy)-00 5557 =

Theorem 4.1: Properties of Limits of Functions of Two Variables

The following rules hold it.,, M, andk are real numbers and
liIn(x,y)—)(a,b) f(x» y) =L and lirn(x,y)—>(a,b) g(x’ y) =M

1. Sum and Difference ruléim ). n(f(x,y) £ g, y) =L+t M
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2. Product ruletim, ;)0 (f(x,¥). g(x,y)) = L.M

3.Constant multiple ruldim(x,y)_}(a,b)(kf(x, y)) = kL, (any number k)

4.Quotient rulelimy -, (a,») % = % M#0

5.Power rule: If ands are integers with no common factors, ane: 0, then

T
; /.
Limy ) (a,b) (f(x, y)) S —1T/s

provided'/s is a real number. (is even, we assume that> 0.)

2 _
Example 10: Findlimy - (0,0) % if it exists

Solution: Since the denominatafx — ﬁ approaches 0 dg,y) — (0,0) we cannot use
the Quotient Rule from the abotleeorem. If we multiply numerator and denominatpr b
Vx + \/_ however, we produce an equivalent fraction whasé live canfind:

li x%-xy li (x2=xy)(Vx+Y)
Mxy)-000) gy = MM E)-00) (7 5)(Varvy)

x(x=y)(Vx+/y)
x-y

= lim(y,y)-0,0) X (VX + /)
=0(~/0 +0)
=0

= lim(y,3)-(0,0)

We can cancdlx — y)the factor because the path= x (along whichx — y = 0) is notin

the domain of the functiohi——=

iy

x2—xy
—l

Remark 4.1:If lim(y 5y, (a,n) f(x,y) = L, along a patlt, andlimy y)-q,b) flx,y) =1L,

along a patit’,, whereL; # L,, then lim,,yp) f (x,¥) does not exist.

Example 11:1f f(x,y) = % doeslimy ;)00 f (X, ¥) exist?

Solution: If y = 0, thenlimy 0,0 f (%, ¥) = limy_ f (x,0) = limy g === 0

f(x,y) » 0as (x,y) — (0,0) along thex —axis

By Kibrom G. and Abrha L 125 AKU




Applied Mathematics Il

: . . 0.
If x = 0, thenlim(y ) 0,0) f(x,¥) = lim,_, f(0,y) = lim,_,, ﬁ =

f(x,y) = 0as (x,¥) — (0,0) along they —axis
Although we have obtained identical limits along #xes. But that does not show that the

given limit is 0. Let's now approadi®,0) along another line, sgy= x. For allx # 0,
then

. . . x.x 1
llrn(x,y)—>(0,0) f(X, y) = 11rnx—>0 f(x' x) = llmyﬁom = B

flx,y) —>% as (x,y) - (0,0) alongy = x.

(See Figure 9.) Since we have obtained differemitdi along different paths, the given
limit does not exist.

Figure 9

2
Example 12:1f f(x,y) = ;Tyw doeslimy ;)00 f (%, ¥) exist?

Solution: I y = 0, thenlimy, )00 f (%, ¥) = limy_ f(x,0) = limy g -z = 0

f(x,y) = 0as (x,y) — (0,0) along thex —axis

. . . 0.y2

If x = 0’ thenhm(X,y)—)(0,0) f(x, }’) = hmy—>0 f(O, JI) = llmyAO# =
f(x,y) = 0as (x,¥) — (0,0) along they —axis

If y = mx,wherem is the slop, then

fGy) = 0as (x,y) » (0,0) alongy = mx.
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Although we have obtained identical limits along tliven lines. But that does not show
that the given limit is 0. Let’s now approa@0) along the parabola = y?, then

yiy? 1

Yyt 2

limy )-(0,0) f (%, ¥) = limyo f(yz' y) = limy_o

flx,y) —>% as (x,y) - (0,0) alongx = y?2.

Since different paths lead to different limitingweas, the given limit does not exist.

4.2.2. Continuity

Definition 4.7: A function f(x, y) is continuous at the point(a, b) if

1. fis defined ata, b),
2. lim(x,y)_,(a_b) f(x, y) eXiStS,

3. limgyy)-0,0) f (X, y) = f(a,b).

v A function iscontinuousif it is continuous at every point of its domain.

Example 13:Show that

3x2y

ey = | o i @9 # 00
0, if (x,y) =(0,0)
is continuous oiRZ.
Solution: We knowf is continuous fofx, y) # (0,0), since it is equal to a rational
function there. Now, ley = mx, m # 0, then
limy )00y f (%, ¥) = limyo f(x, mx)

3x.(mx)?

= lim _
x20 324 (mx)2

= lim Smx
- X201 4m2

=0
This shows thatim, )0 f (x,¥) = f(0,0) = 0.

Therefore f is continuoug0,0), and so it is continuous drY.

By Kibrom G. and Abrha L 127 AKU



Applied Mathematics Il

Example 14:Show that

2xy

Flxy) = xz_,_yz'if (x,y) # (0,0)
0, if (x,y)=1(0,0)

IS continuous at every point except the origin.

Solution: The functionf is continuous at any poifik, y) # (0,0), because its values are

then given by a rational function e&andy.
At (0, 0), the value of is defined, buff, we claim, has no limit a&,y) — (0,0). The

reason is that different paths of approach to tigérocan lead to different results, as we

now see.

Lety = mx,m # 0, then

limy5y-(0,0) f (%, ) = lim,_ f(x, mx)

— i 2x.mx
= Mo x2+(mx)?
__2m

" 1+m2

This shows that the limit changes withtherefore, the limit of the functighas(x,y) —

(0,0) is not unique and hence the limit does not eXistis, the functiorf is not

continuous at the origin.

Remark 4.2:
1.

If fis continuous afa, b) andg is a single-variable function continuousfdt, b), then the
composite functio = gof defined byh(x,y) = g(f(x,y)) is continuous afa, b).

The definitions of limit and continuity for functis of two variables and the conclusions
about limits and continuity for sums, products, tigrts, powers, and composites all exter

to functions of three or more variables.

nd

Exercise 4.2

1. Find the limit of the following functions if it ests

. - eYsinx
a. llm(x'y)_)(l'z) (5X3 — x2y2) Illm(x'y)_)(olo) .

. 4—-xy . xsiny
b. limyy)-21) 7opsy2 meeyy 0 T
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c. lim In ( L+y? ) Kim cosy+1
) (xy)=(1,0) x2+xy ey)=("/20) y—sinx
) xZ4y2 . 2xy+yz
d. limey)-00 7mmmm iy, 2)1-1-1 For,2
. 3x2-y?+5 . Xy—y—2x+2
€. limey)s00 757, ”hlm(x,ygil.n—x_l
. x+y—4 . J2x—y-2
f. limg fhim —
: V)~ (2,2) _ (xy)—(2,0) 5 7
X%y Vx+y-—2 2x—dny 2x-y—4
x2-y? . 1.1 1
. lim ilim (— ~ —)
g )~ 5, @y-3 \z 1t 15

XEY
2. By considering different paths of approach, shoat the following functions have

no limits as(x, y) — (0,0).

4
a. fGy) = e e, y) = 25
4_.,2 2
b. f(x,¥) = ez, y) = =2
c. flx,y)= fc_; H(x,y) = %
3. Find the point of continuity for the following furans

a. f(x,y) =sin(x +y) d(x,y,2) = xysin;
b. g(x,y) = 5= h(x,y) =

c. flx,y)= x2y+1 k(x,y,z) = e**Y cosz

4.3. Partial Derivatives
Overview

In this section we will define the different (ordigartial derivatives of functions of several
variables and find those partial derivatives fdfedent functions, again we will define

total differential and give examples.

Section objective:

After the completion of this section, successfutishts be able to:

= Define partial derivative and total differential
= Find partial and total derivatives for differenhfttions
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Definition 4.8:

1. Partial derivative with respect 10

Thepartial derivative of f(x, y) with respect tox at the point(a, b) is
of

a . flathb)~f(ab)
=—f(x,b = limy,_—————~
2l =) | =tim,

h
provided the limit exists.

2. Partial derivative with respect 0

Thepartial derivative of f(x, y) with respect toy at the poini(a, b) is
of

d . f(ab+h)—f(a,b)
— =—f(a, = limp,g—————
2 an) /(@) - n-0 .

provided the limit exists.

Notations for partial derivatives: If the function isf = f(x,y) , we write

fey) = fo =L =2f(0y) = f = Dif = Dof

K =fy =L =Zf(,y) = f, = Dof = Dyf

Remark 4.3: Let f = f(x,y), then

1. Tofind f,, regardy as a constant and differentigtéx, y) with respect tox.

2. Tofind f,, regardx as a constant and differentigtéx, y) with respect tg.

Example 15:Find the values 0% and Z—i: at the poin(4, —5) if
fle,y) =x*+3xy+y—1.

Solution: To find Z—i we considey as a constant and differentiate with respeat to
of

9 (.2 _
6x_6x(x +3xy+y-—1)
=2x+3y+0-0
=2x + 3y

of — —5) = —
Then,ax s 2(4) + 3(-5) 7.

To find Z—;j we considex as a constant and differentiate with respegt to

of _

2
P £(x2+3xy+y—1)

=0+3x+1-0
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=3x+1
f

Then, & =3(4) +1=13.
0¥l (4,-5)

e Of af .
Example 16:Find aandalf

flx,y) =2

y+cosx

Solution: We treatf as a quotient. Witly held constant, we get

fx = or _ 9 ( 2y ) = (y+cosx)%(ZY)—Zy;—x(y+cosx)
x

ax  ox y+cosx) (y+cosx)?

__ (y+cosx)(0)-2y(-sinx)
- (y+cosx)?

2y sinx
" (y+cosx)?’

With x held constant, we get

=Yoo 2 )_<y+cosx>%<zy>—zy%<y+cosx)
= -

oy 9y \y+cosx) (y+cos x)?

(y+cosx)(2)-2y(1)
(y+cosx)?

_ 2cosx
(y+cosx)?’

Functions of more than two variables

Partial derivatives can also be defined for funtdiof three or more variables. For

example, if f is a function of three variablesy andz, then its partial derivative with
respect tog, y and z is defined as

0 i (r+hyD)-f(xy,
f;C(x’y’Z):af(xjyﬂz):hmh_)ofx yZh f(xy.2)

9 - fOoy+ha)—F(xy,
fy(x;y,Z) = Ef(x,%z) = hmh—>0 al2d Zh (xy.2)

9 ; (xy,z+h)—f(x,y,
fZ(x’y’Z) zgf(X,y,Z) :hmh_)ofxyz . f(x.y,z)

In general, iff is a function oh variablesf = f(xy, x5, ..., x,,), then its partial derivative
with respect to th&" variablex; is

% _ limh_,o f(xl,xz,...,x,-+h,x,-+1,...,:lcn)—f(xl,xz,...,xi,...,xn)
i
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Example 17:find £, f, andf;, if f(x,y,2z) = e Inz.

Solution: Holdingy andz constant and differentiating with respectiave have

9f _ 9 (pxy —Inz2 (exy xy 9
ax_ax(e lnz)—lnzax(e )+e ax(lnz)

=Inz.ye* + e*Y(0)
=ye* Inz.
Holding x andz constant and differentiating with respecttave have

Z—ij = %(exy Inz) = lnz%(exy) + exy%(lnz)

=Inz.xe® + e*¥(0)

= xe* Inz.

and holdingc andy constant and differentiating with respectiave have

9f _ 0 (oxy —InzZ(exy xy 9
az_az(e lnz)—lnzaz(e )+te aZ(lnz)

=Inz(0) +e*¥ G)

exy

zZ

4.3.1. Higher order partial derivatives

If f is a function of two variables, then its partiafigativesf, andf, are also functions
of two variables, so we can consider their padeivatives(f,) ., (f,)y, (fy)x and (fy)y,
which are called theecond order partial derivativesof f. If f = f(x,y), we use the
following notation:

y 0xdy
. . 8 (ar\_ of
(5), = foy = foz —5(7) =27

2
Remark 4.4: Thus, the notatiorfxy(or% ) means that we first differentiate with

respect toc and then with respect §g whereas in computing,, the order is reversed.
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Example 18:Find the second order partial derivatives of
foy) = x% +x%y® — 2y*
Solution: First we find the first order partial derivatives

af @
fo= L= 23+ 227 - 2y7)

=3x%+2xy3 -0
= 3x% + 2xy3

af _ o
fy = E=5(x3 + x2y3 — 2y?)

=0+ 3x%y% — 4y
= 3x2%y% — 4y
Therefore, the second order partial derivatives are

— 0 (f\_ 9 (3,2 3
f;cx_ 6x(6x)_6x(3x +2xy)

= 6x + 2y3
o (of )
fv = 3 () = 2 a2 + 2xy%)

2
fyx = 3 (@) = ——(Bx%y? — 4y)
2

Theorem 4.2:Clairaut’s Theorem (The Mixed Derivative Theorem): If f(x, y) and its partial
derivativesfy, f,, fxy andf,, are defined throughout an open region containipgiat @, b)

and are all continuous &, (), then

fey(a,b) = fyx(a,b)

Remark 4.5:

1. Partial derivatives of order 3 or higher can alealbfined similarly. For instance,

_ _ 0 (3% _ 0°f
f;cyy - (f;cy)y - a(a_yz) T 92ydx
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2. Using Clairaut’'s Theorem it can be shown tig{, = f, ., = fxy, if these
functions are continuous.
Example 19:Find f,., if f(x,y,2) = sin(3x + yz).
Solution:
fi = :—x (sin(3x + yz))
= 3 cos(3x + yz)
fex = ;—x (3cos(3x + yz))
= —9sin(3x + yz)
fexy = % (—9sin(3x + yz))
= —9zcos(3x + yz)
frxyz = ;—Z (—9zcos(3x + yz))

= —9cos(3x + yz) + 9yzsin(3x + yz)
4.3.2. Total Differential

This is a very short section and is here simplgdiknowledge that just like we had
differentialsfor functions of one variable we also have thenfdémictions of more than one

variable.

Definition 4.9: Given the functiorzx = f(x, y) the differentialdz or df is given by:
dz = f,dx + f,dy or df = fedx + f,dy

Similarly, this is extended to functions of threentore variables. For instance, given the

functionw = g(x,y, z) the differential is given by:

dw = g,dx + g,dy + g,dz

Example 20: Compute the differentials for each of the follogifunctions.

a. z=e** tan(2x)

t3r®

s2

b. u=
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Solution:

a. z=e**" tan(2x)

The differential of the function is given by:
dz = fydx + f,dy

2 F)
But, f, = ——f(x,) = —(e¥"*" tan(2x))

= 2xe***Y” tan(2x) + 2e*°*Y* sec?(2x)

_9 — 0 (px?+y?

andf, = ayf(x, y) = 3 (ex Y tan(Zx))

= Zye"zﬂ’2 tan(2x)
Therefore,

dz = (2xe"2+3’2 tan(2x) + 2e***Y* sec? (Zx))dx + (Zye"zﬂ’2 tan(Zx))dy

t3ro

s2
The differential of the function is given by:
du = fidt + f.dr + fids

9 9 3.,.6
But f, = = f(t,7,5) = = ()

b. u=

52
__ 3t%rS
52
9 a (t3ré
fr‘ - ;f(tirﬁs) - ;( SZ )1
_6t3rS
=—
0 9 [t3r®
and1 f:S‘ - &f(t!rl S) - &(5_2)1
_—2t3r
=—5
Therefore,
2.,.6 3..5 _94+3,.6
du = (“; )dt+ (“; )dr+( 2T )ds
S S S

Note 4.2:Sometimes these total differentials are callegbirthedifferentials.
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Exercise 4.3

1. Find the first order partial derivatives of the limlving functions

a. f(x,y) =x* —xy +y? ooy =1
b. f(x,y) = (x* = Dy +2) of (a, B) = sina cos B
c. flx,y)=eIny (e, w) = te"/t
d. flx,y) = (xy — 1)? if(r,s) = rin(r? + s?)
e. flxy) =x2+y? Fv) =/, 4 2
2. Find f,, f, andf; for the following functions
a. f(x,y,2) =1+ xy* —2z* ef(x,y,z) = yzIn(xy)
b. f(x,y,z) = In(x + 2y + 32) f.f(x,y,z)zx—\/m
c. f(x,y,z) = xsinycosz 9f (6, y,2) = (x2 + y2 + 22) " /2

d. f(x,y,z) =tanh(x + 2y +3z) h.f(x,y,z) =x(1 —cosy) —z
3. Find the indicated partial derivatives of the fallmg of the following functions
a. f(,y) =x°y° + 2x*Y; fue fry fynr Fry
b. f(x,3) = €*; fexs iy fyxs Fry
c. f(x,y) =3xy* + x3y?; fuxys fyyy
d. f(r,s,t) = rIn(rs?t3; frs, frst)
e. f(uw,v,w) = cos(4u + 3v + 2w); fuow: foww
4. Verify that the conclusion of Clairaut’s theoremnidsfor the following

a. h(x,y) = xsin(x + 2y) da(x,y) =Iny/x? + y?
b. h(x,y) = In(2x + 3y) eh(x,y) = xsiny + ysinx + xy

c. h(x,y)=e*+xlny+ylnx f.h(x,y) = xye”

5. Find the differential (total differential) of thelfowing functions.

a. z=ycosxy d.= xye**

—_7 — 43 2
b.z= Trxyz 2= x>In(y*)
C. z=ap?cosy 1.=p°¢®
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4.4. The chain rule
Overview

In this section we will discuss way of finding dexiives of functions of several variables

using the idea of chain rule and we will differemi different functions implicitly.

Section objective:

After the completion of this section, successfutienhts be able to:

= Understand the idea of chain rule and implicitetiéintiation
= Differentiate functions implicitly

Case 1: Suppose that= f(x, y) is a differentiable function ok andy, wherex =

g(t),y = h(t) are both differentiable functions of Thenz is a differentiable function of
t and

dz _dfdx , d0fdy
dt ~ dxdt = 9dydt

Example 21:Compute‘§ for the functionz = xe*”,x = t? andy = t™1

Solution: We apply the Chain Rule to firﬁét as follows:
4z _9zdx  0zdy
dt  dxdt dydt

_ a(xe®) d(t?) +a(xexy) a(t1)
T ax  odt dy = dt

= (e + xye™)(2t) + (x%2e™)(—t72)
= (2t) (™ + xye™) — t2x%e™Y

= (2t) (et + tet) — t2et.

= 2tet + t%et

d
Thereforeﬁ = 2tet + t2et.

Example 22:If z = xy, wherex = cost andy = sint, then find% att ==

Solution: We apply the Chain Rule to fiﬁ:é as follows:

dz_6fdx+6fdy
dt ~ dxdt dydt
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__0(xy) d(cost)+6(xy) d(sint)
T oax T dt oy ~  dt

= (y)(=sint) + (x)(cost)
= (sint)(—sint) + (cos t)(cos t) (Sincex = cost,y = sint)

= —sin’t + cos?t

= cos 2t.

Then value of the derivative at the paint g is

dz T
— = CcoS (2.—) =cosmw = —1.
dt t=£ 2

2

Case 2: Suppose that= f(x, y) is a differentiable function ok andy, wherex = g(s,t),y =
h(s, t) are both differentiable functions ofandt.Then,

dz _dfdx , O0f dy dz _dfdx , d0f dy
ds ~ dxds dy ds dt = ox dt dy dt

Example 23:Find% and% for z = e?" sin(30),r = st —t%,0 = Vs? + t2

Solution: Applying Case 2 of the Chain Rule, we get

4z _ osdr 0240

ds  drds 96 ds

__9(e?" sin(36) ) d(st-t?) " 3(e?" sin(30) ) d(VsZ+t2)
- ar " ods a0 " ds

= (2% 5in(30))(t) + (3e?" cos(30)) (

)
VstiiZ
= t(zeZ(St—tZ) Sin(BW)) " 3se2(st-t2) cos(3VsZ+t?)

Vs2+t2
_$2
Therefore, Z = t(2e2(:t) sin(3vsZ + £2)) + 35e20T) cos(3s4t?)
s Vs2+¢2

dz _ 9zdr 0z do
dt ~ drdt 86 dt

_9(e?" sin(36) ) d(st-t?) " 9(e?" sin(30)) dVs2+t2
B or T 26 ©oat

= (22" sin(360))(s — 2t) + (32" cos(36)) (

t
V52+t2)

= (5 — 20)(226¢4) sin(3VET 7))  SLZTT cos(aETIE)

Vs2Z+¢2
_42
Therefore, £ = t(232(st—t2) sin(3VsZ + £2)) + 35e2(5t~) cos(3VsZ +12)
s VsZ+t2
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Example 24:If z = e* siny, wherex = st? andy = s2t, then find% and%.

Solution: Applying Case 2 of the Chain Rule, we get

dz _ dfdx |, df dy
ds  dxds dy ds

__d(e*siny) d(st?) N d(e*siny) d(s%t)
- ox " ds dy " ds

= (e*siny)(t?) + (e* cos y)(2st)
= t2e5" sin(s2t) + 2stest” cos(s2t)

dz_6fdx+6fdy
dt  dxdt dydt

__9(e*siny) d(st?) n d(e*siny) d(s%t)
o ox Todt oy Todt

= (e*siny)(2st) + (e* cos y)(s2)

= 2steSt” sin(s2t) + s2est” cos(s2t).
Note 4.3:Case 2 of the Chain Rule contains three typesridiblas:s andt are
independentvariablesx andy are calledntermediate variables, and is thedependent

variable.

The general version of the chain rule

Suppose thaf is a differentiable function of the variables,, x,, ..., x,, and eacly; is a
differentiable function of then variablest,, t,, ..., t,,. Then,f is a function of

t1,ty, ., ty and

dz _ 0f dxq of dx, n af dxn
dat; - 0x, dt; 0x, dt; Oxy dt;

Example 25:If f = x*y + y?z3, wherex = rset,y = rs?e~t andz = r?ssint, then
find the value of‘;—]; whenr = 2,s = 1 andt = 0.

Solution: Using the general chain rule, we have

df 6fdx+6fdy+6fdz
ds  dxds dy ds 0z ds

= (4x3y)(ret) + (x* + 2yz3)(2rse™") + (3y?z%)(r?sint)

When,r = 2,s =1 andt = 0, we havex = 2,y = 2 andz = 0, so
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<= (692 + (16)(4) + (0)(0)
= 192.
1.4.1. Implicit differentiation

Theorem 4.3: (A Formula for Implicit Differentiation): Suppose th&E(x, y) is
differentiable and that the equatiBfix, y) = 0 definesy as a differentiable function x.
Then at any point whei§, # 0,

dy _ Fy

dx Fy

Proof: Letz = F(x,y) and sincé& (x,y) = 0, the derivativ% must be zero. Computing
the derivative from the Chain Rule, we find

_ dz _ 6F dx 6_Fd_y
=—=——— (SlnCEF(x y) =0)

= Fx.1+Fy.£

. da
Now, solving forﬁ, we get

dy Fy
dx Fy

Example 26:Find2—z if x3 +y3 =6xy.
Solution: The given equation can be written as

Flx,y)=x3+y3—6xy=0

andF, =—(x +y3 —6xy) = 3x* — 6y,F, =—(x + y3 — 6xy) = 3y? — 6x
Therefore,
dy _ B 3x*-6y
dx Fy T 3y%-6x
_ x%-2y
y2—2x

Example 27:Find3—i’ for 3y* + x7 = 5x
Solution: The given equation can be written as
F(x,y) =3y*+x”—=5x =0

and F, = %(33}4 +x7 —=5x) =7x® = 5,F, = ;—3}(3314 + x7 —5x) = 12y3
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Therefore,
v _ _F_ _7x°-5
ax  F,  12y3
d 2_2
Thus,—y = — x2 Y
dx ye—2x

Note 4.4:Now we suppose that is given implicitly as a fumet = f(x,y) by an
equation of the forn¥ (x,y, z) = 0. This means that(x,y, f(x,y)) = 0 for all (x,y) in
the domain off. If F andf are differentiable, then we can use the Chain Rule

differentiate the equatioR(x, y,z) = 0 as follows:

OFdx  OFdy \ 0Fdz _
Ox dx 0dydx dz dx

dx dy . .
But,a =1 anda = 0, so the above equation becomes:

OF OF dz _ 0
ox dz dx

oF d .
If = # 0, we solve ford—i and we obtain

dz _ Fy

dx F,
Using similar procedures, we obtain the formula%as

“z_ 5

dy F,
Example 28:Find% andZ—i if x3+y3+ 23 +6xyz=1.

Solution: Let F(x,y,z) = x3 + y3 + z3 + 6xyz — 1, then

dz _ F _ 3x%+6yz

dx  F,  3z2+6xy
_ x%42yz
z2+42xy

dz _  F, _ 3y?+eéxz

dy F, 3z2+6xy
_ y%4oxz
z2+42xy

Example 29:Find % andZ—; for x3z2 — 5xy°z = x? + y°
Solution: Let F(x,y,z) = x3 + y3 + z3 + 6xyz — 1, then

Fx=;—x(x3+y3+z3+6xyz—1)=3x2—6yz
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E, =%(x3+y3+z3+6xyz—1) = 3y? — 6xz

FZ=%(x3+y3+z3+6xyz—1):6xy

d F, 3x%-6
Therefore/— = — = = - =2 —2%
dx F, 6xy
dz F. 3y%2-6
and_ - Y _3yTTexz
dy F, 6xy
Exercise 4.4

1. Using the chain rule find:% for the following
a. f=x*+y*+xy,x =sint,y =et
b. f=\/m,x=lnt,y:cost
C. f=ln\/m,x=sint,y=cost,z=tant
d. f=xey/Z,x=t2,y=1—t,z=1+2t

2. Using the chain rule findg and Z—’: for the following

o

f=tan(%/y),u=2s+3t,v=3s— 2t

b. f=x%y3,x=scost,y =ssint

C. f=ercost9,r=st,9=m

d. f=xe3’_zz,x=25t,y=s—t,z=s+t

e. f=In(x?+y%+z2),x=s+2t,y=2s—tz=2st

3. Use the chain rule to find the indicated partialigiatives

— a2 3 a2 3 0 a2 3 . w 4f 4f ar
a. f=x"+xy’,x=uv*+w’x=uv - +w>y=u+ve » ooy @ d e
. df d
b. f=+Vr2+s?r=y+xcost,s =x+ ysint; d—i,d—fand Z—{
_ 2 _ it gy O A df
C. f=x +yz,x—prcost,y—prsmt,z—p+r,dp,drand p”

4. Find Z—z for the following and find the value (% at the given point.
a. x3—2y*+xy=0,at (1,1)
b. xy+y?2—-3x—-3=0,at (—1,1)
c. x2+xy+y*—7=0,at (1,2)
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d. xe¥ +sinxy+y—In2=0,at (0,In2)
5. Find % and Z—; for the following and find their values at the givpoint.
a. xe¥ +ye*+2Inx—2—-3In2=0,at (1,In2,In3)
b. %+%+§— 1=0,at (2,3,6)
c. z2—xy+yz+y*—-2=0,at(1,1,1)
d. sin(x +y) + sin(y + z) + sin(x + z) = 0, at (7,7, )

4.5. Directional derivatives and gradients

Overview
In this section we study the definition of directéd derivative and gradient and we will

find directional derivatives and gradients of diéfet functions

Section objective:

After the completion of this section, successfutishts be able to:

= Define directional derivative and gradients
= Find directional derivative and gradient

4.5.1. Directional derivative

Definition 4.10: Thedirectional derivative of fat (x,, y,) in the direction of a unit
vectoru = ai + bj is

. f(xo+ha,yo+hb)—f(x0,¥0)
Duf (%0, ¥0) = limy, g ———rem e

if the limit exists.

Example 30:Find the derivative of
flx,y) =x%+xy
. . . . _ 1 ) 1 B
atP,(1,2) in the direction of the unit vectar ( /\/E) i +( /ﬁ)j

Solution:

. f(xo+ha,yo+hb)—f(x0,Y0)
Dy, f (x0,¥0) = limp_,o = : h =
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1

f<1+h(ﬁ),2+h(%)>—f(1,2)
h

(1+%)2+(1+%)<(2+%)>—(12+1.2)

h

(1 I\Z/;l t l122)+(2 If/; t }122)—3

h

= hmh_,()

= hmh_,()

= limh_>0

) %+h2
= llmh_>0

h
5

ﬁ+0

:hmmm%+h:

_ 5

V2
Therefore, the directional derivative pfx,y) = x? + xy atP,(1,2) in the direction

w=(Yg)i+ (YVyg)ris

Theorem 4.4:If f is a differentiable function of andy , then f has a directional

derivative in the direction of any unit vector= ai + bj and
Duf(x:Y) = fx(x,y)a + fy(x'y)b

Proof: If we define a functiory of the single variable by
g(h) = f(xo + ha,y, + hb)
then, by the definition of a derivative, we have

g(h)—g(0)
h

f(xo+ha,yo+hb)—f(x0,y0)
h

= Dy f (x0,¥0) (1
On the other hand, we can wrgéh) = f(x,y), wherex = x, + ha,y = y, + hb, then

g’(O) = limy_,

= limh_>0

() = U dx Oy
g'(h) = 6xdh+6ydh

= f(x,y)a+ f,(x,¥)b
If we now puth = 0, thenx = x,,y = y, and
9'(0) = fi(x0,y0)a + f,,(x0,¥0)b (2)
Now, combining equationd) and(2), we get
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Dy f (x0,¥0) = fx(x0,¥0)a + f,,(x0,¥0)b

Remark 4.6: If the unit vector: makes an anglé with the positivex —axis, then we car

write u = cos 8 i + sin 6 j and the formula in theorem 4.4 becomes:

Dyuf(x,y) = f(x,y) cos 6 + f,,(x,y) sin 6 3)

Example 31:Find the directional derivativB,, (x, y) if

fx,y) = x* = 3xy + 4y?
And u is the unit vector given by anghe= 7T/6 and what i, f(1,2)?
Solution: Here,f,(x,y) = 3x* — 3y and f, (x,y) = —=3x + 8y
Then, from formulg3), we have
Dyf(x,y) = fo(x,y) cos 6 + f,(x,y) siné
= (3x%2-3y) cos% + (—3x + 8y) sin%

= (3x%—-3y) \/;+(—3x + 8y)%
1
= ~[3v3x? = 3x + (8 - 3v3)y]
Therefore

D,f(1,2) = %[3\/5(1)2 —-3.1+(8-3v3)(2)]

_13-343
T2

4.5.2. Gradient vector

Definition 4.11: If f is a function of two variables andy, then the gradient ¢f is the

vector functiorVf defined by

VfGy) = 5Lit L) = () f ()

Example 32:FindVf (x,y) andVf(0,1), if f(x,y) = sinx + e*”
Solution: £, (x,y) = % (sinx + e*)

= cosx + ye*”
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and f(x,y) = aa_y (sinx + e™)
= xe™y
Therefore
Vilx,y) = %i +Z—£j = (cosx + ye™?)i + (xe™)j
and V£ (0,1) = 2i.
v' The relation between the directional derivative tragradient vector is expressed
as follows:
Dyf(x,y) =Vf(x,y).u

Example 33:Find the derivative off (x,y) = xe¥ + cos(xy) at the poin(2,0) in the
direction ofv = 3i — 4j.

Solution: The direction ob is the unit vector obtained by dividingby its length. i.e.
3. 4
_l ——

u= _17_ .
T w5 s 5/

The partial derivatives gf are everywhere continuous and these are:
fe, ) = - (xe? + cos(xy))
= eY — ysin(xy)
and f,(2,0) = (e¥ —ysin(xy))(2,0) =1
Similarly,  f,(x,y) = aa_y (xe¥ + cos(xy))
= xe¥ — xsin(xy)
and f£,(2,0) = (xe” —xsin(xy))(2,0) = 2
The gradient of at(2,0) is
Vf(2,0) = £(2,0)i + £,(2,0))
=i+2j
The derivative off at(2,0) in the direction ob is therefore
D,f(2,0) = Vf(2,0).u

“ o (i-t)
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Functions of three variables

Definition 4.12: Thedirectional derivative of f at(x,, y,, o) in the direction of a unit

vectoru = ai + bj + ck is

T f(xo+ha,yo+hb,zo+hc)—f (x0,Y0.20)
Dy f (x0, Y0, Zo) = limp,_,g h

if the limit exists.

Remark 4.7:1f f(x,y, z) is differentiable and = ai + bj + ck, then
Dyf(x,y,2) = f,(x,y,2)a + f,(x,y,2)b + f(x,y,2)c

Definition 4.1% For a function of three variables, tedient vector, denoted by
Vfis

af . af . 7]
Vf(x,y,z) = él +£1 +ék ={fx(x,y,2), £, (x,¥,2), f;(x,y,2))

Note 4.5:Similar to the function of two variables the redatbetween the directional
derivative and the gradient vector is given as:
D.f(x,y,2) =Vf(x,y,2).u
Example 34:If f(x,y,z) = xsinyz, then
a. Find the gradient of.
b. Find the directional derivative gfat(1,3,0) in the direction ob =i + 2j — k.
Solution:
a. The gradient of is
Vi, y,z) =fi(x,y,2), f,(x,,2), £,(x,y,2))
= (sinyz,xz cos yz,xy cos yz)
b. At (1,3,0) we haveVf(1,3,0) = (0,0,3) = 3k.

The unit vector in the direction of=i + 2j — k is

v v 1., 2, 1
UELTRT R R TR,

Therefore,
D,f(1,3,0) = V£(1,3,0).u
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- 60 (51 + - 5)

_ -3

=—.
4.6. Tangent Planes and Tangent plane approximation

Overview

In this section we will discuss the idea of tangaahe and tangent plane approximation

and we will find tangent planes and tangent plg@a@imations to different functions.

Section objective:

After the completion of this section, successfutienhts be able to:

» Understand tangent planes and tangent plane appatigins
= Find tangent plane and tangent plane approximadidime given function

4.6.1. Tangent plane

Suppose a surfacehas equation = f(x,y), wheref has continuous first order partial
derivatives, and le® (x,, y,, z,) be a point o$. Let C;and C, be the curves obtained by
intersecting the vertical plangs= y, andx = x, with the surface&.Then the poinP lies
on bothC; and C, . LetT;and T, be the tangent lines to the curvgsand C, at the point
P. Then thaangent planeto the surfacé at the poin® is defined to be the plane that
contains both tangent linés and T, . (See Figure 10)

Figure 10
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The tangent plane & is the plane that most closely approximates tiniase S near the

point P. We know that the general equation of a plane wpasses througlx,, v,, z,) is

given by,

alx —xg) + by —yo) +c(z — z)
By dividing this equation by and lettingd = —% andB = —% , We can write it in the
form:

z—2zo=A(x —x0) + B(y — ¥o) 1)
Let’s first think about what happens if we hgidixed, i.e.if we assume that = y, . In
this case the equation of the tangent plane begomes

z—2z9=A(x —X0),¥ = Yo
and we recognize these as the equations of a ltheslepeA and we know that the slope
of the tangent; is f, (xq, Vo).
Similarly, if x = x, in equation (1), then the equation becomes

z—20 =By —¥0),x = xo
Which must represent the tangent ling’pfind its slope is B f, (x, yo).

Definition 4.14: Supposef has continuous partial derivatives. An equatiothef

tangent plane to thesurfage= f(x, y) at the point? (x,, yo, zo) IS

z— 2y = fx(X0,Y0) (x — %0) + £, (%0, Y0) (¥ — ¥o)

Example 35:Find the tangent plane to the elliptic paraboloid 2x2 + y? at the point
(1,1,3).
Solution: Let f(x,y) = 2x? + y%. Then
fe(x,y) = 4x fy(x,y) =2y
(1) =4 £,(1,1) =2
Therefore, equation of the tangent planélat,3) is
z =29 = fr(x0,¥0)(x — x0) + fy, (X0, ¥0) v — ¥0)
=z-3=£0DEx-D+£ADE-1
=z—-3=4x-1)+2(y—-1)
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= z=4x+2y — 3.
Thus, the equation is= 4x + 2y — 3.

40

20

20T

Figure 11

Example 36:Find the equation of the tangent plane te In(2x + y) at the point
(—-1,3,0).
Solution: Let f(x,y) = In(2x + y). Then
— 2 —
f;C(ny) - 2x+y fy(XJJ’) -

fe(=13) =2 f(=13) =1
Therefore, equation of the tangent plané-t,3,0) is

1
2x+y

z— 2y = fx(X0,y0) (X — x0) + £, (%0, Y0) (¥ — ¥o)
=z-0=f,(-13)(x+ 1)+ £,(-1,3)(y — 3)
=z=2x+1)+(y—-3)

=>z=2x+y—-1.
Thus, the equation is= 2x +y — 1.
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4.6.2. Tangent plane approximation

One nice use of tangent planes is they give usyadevapproximate a surface near a point.
As long as we are near to the pdin§, v,) then the tangent plane should nearly

approximate the function at that point.

In general, we know that an equation of the tangéarte to the graph of a functigrof

two variables at the poirt, yo, f (X0, ¥o)) IS

z = f(x0,¥0) + fx (X0, ¥0) (x — x0) + £, (x0, Y0) (¥ — ¥o)
The linear function whose graph is this tangenh@janamely

L(x,y) = f(x0,¥0) + f (X0, Y0) (x — x0) + £, (X0, ¥0) (¥ — ¥0)
is called thdinearization of f at (x,, y,) and the approximation

f,y) = f(x0,¥0) + fi (X0, ¥0) (x — x0) + £, (0, ¥0) (¥ — o)
is called thdinear approximation or thetangent plane approximationof f at (xg, y,)-

2 2
Example 37:Find the tangent plane approximatiorzte: 3 + ’1‘—6 + % at(—4,3).

Solution: Let f(x,y) =3 +’1‘—Z+ %2 . Then
f(-43)=3+14+1=5
feboy) =2 fey) =%

2

fo(=43) = - fy(-43) ==

Then, the tangent plane approximation is
f,y) = f(x0,¥0) + fi (X0, ¥0) (x — x0) + £, (0, ¥0) (¥ — ¥0)
=f(=43) + f(=43)(x + D+/,(-43)(y — 2)

=5+—-(x+4)+: (y—4)

—2_1.,2

=2 >X + 4
Therefore, the tangent plane approximatioh(is, y) = 2 — %x + éy.
Example 38:Find the tangent plane approximationfgk,y) = x? — xy + %yz + 3 at the
point (3,2).

Solution: Let f(x,y) = x? — xy + %yz + 3, then
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f32)=9-6+2+3=38
(e, y) =2x—y fly)=y—x
f(32) =4 £,32)=-1
Then, the tangent plane approximation is
f,y) = f(x0,¥0) + fi(x0, ¥0) (x — x0) + £, (X0, ¥0) (Y — ¥0)
=fB2)+ B2 (x - 3)+/,GB2)(y - 2)
=8+4(x—-3)+-1 (y—2)
=—-2+4x—y
Therefore, the tangent plane approximatioh(is, y) = 4x —y — 2.

Exercise 4.5

1. Find the directional derivatives of the followingnttions atP, in the direction of
the given vectors.
a. f(x,y) =2xy—3y% P, =(55),u=4i+3j
b. f(x,y) =2x%2+y%, Py =(—-1,1),u =3i — 4j
c. fl,v,2)=xy+yz+zx,Pp=(1,-12),u=3i+6j—2k
d. h(x,y,z) = cosxy + e*? +Inzx,P, = (1,0, 1/2)
e. h(x,y,z) =xe¥ +ye*+ ze*,P, = (0,0,0),u =5i +j — 2k
2. For the following functions
h. Find the gradient vector.
ii. Evaluate the gradient at the point P.
. fx,y) =sin(2x + 3y),P = (—6,4)
. feoy) =y—x%P=(-10)
. flx,y,z) =x*+y?—2z2+zInx,P = (1,1,1)

o o

o

d. f(,v,2) = 2 +y% +22) /2 +In(xyz), P = (=1,2,—2)
e. f(x,y,z) =xe®* P =(30,2)
3. Find equations of the tangent plane to the givefese at the specified point
a. 2(x—22%+(y—-1)2+4+(z-3)2=10,P, = (3,3,5)
b. x?+y?—-2xy—x+3y—z=—-4,P, =(2,—-3,18)
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c. xe¥cosz—z=1,P, =(1,0,0)
d. cosmx —x%y +e** + yz, P, = (0,1,2)
e. x2 -2y +z2+yz=2,P,=(2,1,-1)
f. yz—In(x+2z)=0,P, =(0,0,1)
4. Find the linearization of the function at each goin
a. f(x,y) =x*+y*+1at(0,0)and (1,1)

b. f(x,y) =e ™ cosy at (m,0)

c. f(x,y) =sin(2x + 3y) at (-3,2)

d. f(x,y) =3x—4y+5at(0,0)and(1,1)

e. f(x,y,2) =xy+yz+xzat(1,1,1),(1,0,0) and(0,0,0)

f. flx,y,z) =x*+y?+z%?at(1,1,1),(0,1,0) and(1,0,0)

g. f(x,y) =e*cosy at(0,0) and(0,7/,)

h. f(x,y,z) =+x%+y?+ 2% at(1,0,0),(1,1,0) and(1,2,2)

4.7. Relative extrema of functions of two variables

Overview

In this section we define relative maximum valud aglative minimum values of a
function, absolute maximum and absolute minimurfunttions, critical point and saddle

point and we will find those defined terms for dint functions

Section objective:

After the completion of this section, successfutienhts be able to:

= Define relative and absolute maximum and minimum

= Find relative and absolute maximum and minimum eslu
= Define critical and saddle points

= Find critical and saddle points to given functions
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Definition 4.15:
1. Afunctionf(x,y) has a relative minimum at the pofat b) if f(x,y) = f(a, b)
for all points(x, y) in some region aroun@, b).
2. Afunction f(x,y) has a relative maximum at the pofnt b) if f(x,y) < f(a, b)

for all points(x, y) in some region aroun@, b).

Note 4.6 this definition does not imply that a relativenimnum is the smallest value that
the function will ever take. It only says that on%e region around the poift, b) the
value of the function will always be larger thAfu, b). Similarly, a relative maximum
only says that arounda, b) the value of the function will always be smalleant f (a, b).
v If the inequalities in the above definition hold &l points(x, y) in the domain of
f, thenf has an absolute maximum (or absolute minimunijat).
v" The term relative extrema indicates both the nedathinimum and relative

maximum.

Definition 4.16: The point(a, b) is a critical point (or a stationary point) Hfx, y) provided

that one of the following is true:

1. Vf(a,b) = 0 (this is equivalent to saying thgi(a, b) = 0 andf,(a, b) = 0)
2. fi(a,b) and/ or f,(a, b) does not exist.

Theorem 4.5:1f the point(a, b) is a relative extrema of the functigiix, y), then(a, b) is
also a critical point of (x, y) and Vf(a, b) = 0.

Proof: Letg(x) = f(x, b). If f has a local maximum (or minimum) @t, b), theng has a
local maximum (or minimum) at and by Fermat’'s Theorem we hay€a) = 0.

But, g'(a) = f,(a,b) and sof,.(a, b) = 0.

Similarly, leth(y) = f(a,y). If f has a local maximum (or minimum) @t, b), thenh has
a local maximum (or minimum) @tand by Fermat's Theorem we hav/éb) = 0.

But, h'(b) = £, (a, b) and sof, (a,b) = 0.

Now, combining these two conditions together, weW&a, b) = 0 and this indicates that
(a, b) is a critical point off (x, y).

Example 39:Find the extreme values ffx,y) = x* + y* — 2x — 6y + 14.
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Solution: Let f(x,y) = x? + y?> — 2x — 6y + 14. Then,
fr(x,y) =2x—-2 and f,(x,y) =2y -6
Now, to find the critical points, we have
f(x,y) =2x—2=0 andf,(x,y) =2y —6=0
That isx = 1 andy = 3 and therefore, the critical point($,3).
By completing the square, we find that
floy) =4+ x-D*+(y—3)?
Since(x — 1)? > 0 and(y — 3)? = 0, we havef(x,y) = 4 for all values ofc andy.

Thereforef(1,3) = 4 is a local minimum and in fact it is the absoloti@imum.

Figure 12 z=x?+y2 —2x — 6y + 14

Example 40:Find the extreme values ffx,y) = y? — x2.
Solution: Let f(x,y) = y? — x2. Then,

i, y) =—=2x and f,(x,y) =2y
Now, to find the critical points, we have

file,y) ==2x=0 andf,(x,y) =2y=0
That isx = 0 andy = 0 and therefore, the critical point(8,0).
Notice that for points on the— axis we have = 0, sof (x,y) = —x2 < 0 (if x # 0).
However, for points on the — axis we haver = 0, sof(x,y) = y? > 0 (if y # 0). Thus
every disk with centef0,0) contains points wherg takes positive values as well as points
wheref takes negative values.
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Therefore, £(0,0) = 0 can't be an extreme value ffy so f has no extreme value.

Figure 13 z = y? — x?

Definition 4.17: A differentiable functiorf(x, y) has asaddle pointat a critical point&,
b) if in every open disk centered at b) there are domain points, §y) wheref (x,y) >
f(a, b) and domain pointéx, y) wheref (x,y) < f(a,b). The corresponding poird,(

b, f(a, b)) on the surface = f(x,y) is called a saddle point of the surface.

s Example 34 illustrates the fact that a functioncheet have a maximum or
minimum value at a critical point. You can see th@,0) = 0 is a maximum in
the direction of ther —axis but a minimum in the direction of tpe-axis. Near the

origin the graph has the shape of a saddle arid,8pis a saddle point of.

Second derivatives testSuppose the second order partial derivativg&oé continuous on a
disk with centel(a, b), and suppose th#t(a, b) = 0 andf, (a,b) = 0 ((a, b) is a critical point
of f). Let

D = D(a,b) = fux(a,b)f,y(a,b) - [fey(a, D]’
a. If D > 0 andf,,(a,b) > 0, thenf(a, b) is a local minimum.
b. If D > 0 andf,(a,b) <0, thenf(a, b) is a local maximum.

c. If D <0, thenf(a, b) is not a local minimum or local maximum.

Remark 4.8:
1. In case (c) the poir(a, b) is called a saddle point ¢fand the graph of crosses
its tangent plane &u, b).
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2. If D =0, the test gives no informatiofi:could have a local maximum or local
minimum at(a, b), or (a, b) could be a saddle point 6f
3. To remember the formula far, it's helpful to write it as a determinant:

fex  fry
fyx fyy

Example 41:Find the local maximum and minimum values and Eagdints of

D= = fexfyy — (fxy)z

fle,y) =x*+y*—4xy + 1.
Solution: We first find the critical points:

fr=4x®—4y and f, =4y’ —4x
Setting these partial derivatives equal to 0, waiolthe equations

x3—y=0 and y3 —-x=0
To solve these equations we substitute x3 from the first equation into the second one.
This gives

0=x’—x=x(x%-1)

=x(x*—1Dx*+1)
=x(x2-DE*+DK*+1)

So there are three real roats: 0,1, —1. The three critical points af®,0), (—1,—1) and
(1,1).
Next we calculate the second partial derivativesfx, y):

fax=12x* -4  fo,=—4 f,, =12y*—4

D(x,Y) = furfyy — (fiy)” = 1442%y% — 16
and D(0,0) = —16,D(—1,—1) = 128 and f,,(—1,—1) = 12 andD(1,1) =
128 and f,,(1,1) = 12.
SinceD(0,0) = —16 < 0, it follows from case (c) of the Second Derivasivieest that
the origin is a saddle point; that fShas no local maximum or minimum @0).
SinceD(1,1) = 128 > 0 and f,,(1,1) = 12 > 0, we see from case (a) of the test that
f(1,1) = —1is alocal minimum. Similarly, we have
D(—1,-1) =128 >0 and f,,(—1,—1) =12 > 0, sof(—1,—1) = —1 is also a local

minimum.
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The graph off is shown in Figure 14 below.

Figure 14 z=x"+y*—4xy+1
Largest and smallest values of a function on a gineset
Extreme Value Theorem for Functions of Two Variable: If f is continuous on a
closed, bounded sd in R3, thenf attains an absolute maximum valf,, y,) and an

absolute minimum valug ' (x,, y,) at some pointéx;, y;) and(x,, y,).

Remark 4.9 To find the absolute maximum and minimum valuies continuous
function f on a closed, bounded g&t

1. Find the values of at the critical points of in D.

2. Find the extreme values ffon the boundary ab.

3. The largest of the values from steps 1 and 2 isbis®lute maximum value and

the smallest of these values is the absolute mimmwalue.

¢ Absolute maximum is also called the largest vahe @solute minimum is also
called the smallest value.
Example 42:Find the absolute maximum and minimum values of
fle,y) =2+ 2x+2y —x* —y?
on the triangular region in the first quadrant baeoh by the lines =0,y =0,y =9 — x.
Solution: Sincef is differentiable, the only places whegfean assume these values are

points inside the triangle (Figure 15), whe¢re= f, = 0 and points on the boundary.
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(1, 1)
L

.
o y=20 A(9.0)

Figure 15 This triangular region is the domdithe function in Example 5.
a. Interior points . For these we have
fi=2-2x=0 and f,=2-2y=0
yielding the single poinfx, y) = (1,1) and the value of at this point is

f(1,1) =4
b. Boundary points. We take the triangle’s one side at a time:
1. On the segment OA;, = 0 and the function becomes
flx,y) =f(x,0) =2+ 2x — x?
This function can be regarded as a functiow défined on the closed interval
0 < x <9 and its extreme values may occur at the end points
Forx = 0 we havef (0,0) = 2
Forx =9 we havef(9,0) = —61
and at the interior points we haffx,0) = 2 — 2x = 0. The only interior point
wheref’(x,0) =0isx =1, and
f(1,0) = 3.
2. Onthe segment QB = 0 and the function becomes
fl,y)=f(0,y) =2+2y—y?
This function can be regarded as a functiop defined on the closed interval

0 < y <9 and its extreme values may occur at the end points
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Fory = 0 we havef(0,0) = 2

Fory = 9 we havef(0,9) = —61
and at the interior points we hafg&0,y) = 2 — 2y = 0. The only interior point
wheref’(0,y) =0isy =1, and

£(0,1) = 3.

3. Onthe segmemB, y = 9 — x and we have already accounted for the valugs of
at the endpoints AAB, so we need only look at the interior pointA&t
f,V)=f(x,9—x)=2+2x+2(9 —x) —x? — (9 — x)?
= —61 + 18x — 2x?
and f'(x,9 —x) =18 — 4x
Settingf'(x,9 —x) = 18 — 4x = 0 gives
e==]

At this value ofx, we have

ymo-i=t sty -4

Therefore, the absolute maximum valugf a$ 4 which attains a1,1) and the absolute

minimum value off is —61 which attains a9,0) and(0,9).

Exercise 4.6

5. Find the local maximum, local minimum and saddlmigs) of the following
functions.
a. f(x,y) =9 —2x+4y — x? — 4y?
b. f(x,y) = 2x3 + xy? + 5x% + y?
c. f(x,y)=3+2x+2y—2x%—2xy—y?
d. f(x,y) =2xy —5x*—-2y?+4x+4y—4
e. f(x,y) =4x? — 6xy + 5y% — 20x + 26y
f. flx,y) =3x%+6xy+7y% —2x+ 4y
g. fx,y)=x2+xy+y*+3x—3y+4
6. Find the absolute maximum and absolute minimumegadi the following

functions on the given domains.
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a. f(x,y) =x?+ y? on the closed rectangular plate bounded by theslin
x=0,y=0,y+ 2x = 2 in the first quadrant.

b. f(x,y) =2x%*—4x + y* — 4y + 1 on the closed triangular plate bounded by
the linesx = 0,y = 2,y = 2x in the first quadrant.

c. f(x,y) =4x+ 6y —x% — y? onthe closed regioh = {(x,y)|0 < x < 4,0 <
y <5}

d. f(x,y) =x%—3x —y3+ 12y on the quadrilateral whose vertices are
(-2,3),(2,3),(2,2) and (-2, —2).

e. f(x,y) =3+ xy —x — 2y on the closed triangular region with vertices
(1,0), (5,0) and(1,4).
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4.8. Lagrange Multipliers

Extreme values under constraint conditions, Lagrang multiplier

Overview
In this section we study the idea of Lagrange rplidtr and we study how can we find

extreme values of a given function using the idelaagrange multiplier.

Section objective:

After the completion of this section, successfutients be able to:

= Understand the idea of Lagrange multiplier
= Apply Lagrange multiplier to find extreme values #ogiven function

Find points of continuity for different functions

Consider the functiory of two variables and then finding an extreme gallif subjected
to a certain constraint (side condition) of thexfoy (x, y) = c, that is, an extreme value of
f on the level curveg(x, y) = c¢ (rather than on the entire domain of. If f has an
extreme value on the level curve at the p6irgt y,), then under certain conditions there
exists a numbet such that

grad f(xe, Yo = A.grad g(xo, o)

Theorem 4.6 - Let f and g be differentiable afx,, y,). LetC be the level curve

g(x,y) = c that containgx,, y,). Assume tha€ is smooth, and thdt,, y,) is not an end
point of the curve. Igrad g(x,,y,) # 0, and if f has an extreme value Grat

(x0, Vo), then there is a numbgrsuch that

grad f(xg,¥0) =A.9rad g(Xg, Vo) « «eeverrervneminianieaennnns *)
The numberA is calledLagrange multiplier for the functionsf andg .
The equation given in (*) is equivalent to the peiequations
fx (X0, ¥0) = A.9x(x0,¥0) and f;,(xo,¥0) = 1.9y (x0,¥0)
Method of determining extreme values by means of lggange multiplier

Assumingf has an extreme value on the level cy{e, y) = c andVg # 0
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1. Solve the equations

Constraintg(x,y) =c

grad f(x,y) = A.grad g(x,y)
Or

%mw=kw@w
f(x,y) =21.g9,(x,y)

2. Evaluate the values g¢gfat each point of(x, y) that result from step 1, and at each
end point (if any) of the curve.
* The largest of these values computed istlagimum value of f .
* The smallest of these values computed isttimemum value of f

Note 4.7:Constraint is any limiting condition; in our casdimiting function.

Example 43: Let f(x,y) = x% + 4y3. Find the extreme values ffon the ellipse
x?+2y? =1.

Solution: Letg(x,y) = x? + 2y?
The constraint isg(x,y) = x* + 2y? =1
Then we need to find the poirgk, y) such that the following conditioned is satisfied

grad f(x,y) = A.grad g(x,y)
Or

{ﬁc(x,y) =1.9x(x,y)
fy(x;}’) =1 -gy(x'Y)

fo(x,y) = 2x and f,(x,y) = 12y?
9x(x,y) =2x and g,(x,y) =4y

Then,grad f(x,y) = 2x)i + (12y?)j and grad g(x,vy) = 2x)i + (4y)j
Then, by stepl, the equation which we will usend fx andy becomes
Constraint:x? + 2y2 =1 .o oo e v vev e e (1)
2xi + 12y%j = 1. 2xi + 4yj

Or
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2X = A2X vt vt (2)
{12312 =AY e e (3)

From(2) we obtain eitherx =0or 1 =1

If x=0,thenfrom(1) we gety ==  or y=——

If =1, then(3) becomed2y? = 4y which gives the resuit =0 or y = g .
If y=0,thenfrom(1l) we getx =10orx =-1.

If y =§,from(1) we getx =gorx = —g

The possible points th#twill have an extreme value are:

N7 V7
(0'%) ) (0,—%) ) (1, 0) !('1’0) ) (?7’ é) and 6?71 é)

Find the functional values at each point and coeypand then the largest value indicates
the maximum value of and the smallest value indicates the minimum vafyé

===

Now f(0,2) =vZ, £(0,~%) = —VZf(1,0) = 1 = f(~1,0) andf (Z,2)
(=53

Since f (0, \/%) = /2 is the largest angf (0,—%) = —/2 is the smallest, we conclude

that the maximum value g¢fisv2 and occurs &0, %) and the minimum value isv/2
. 1

which occurs af0, — 5).

The Lagrange Method for Functions of Three Variabls

By an argument similar to functions of two variahl# is possible to show that jf has an
extreme value dtxy, o, 2,), thengrad f (x,, o, 2o) and grad g(x,, ¥o, 2,), if not 0, are
both normal to the level surfaggx, y, z) = ¢ at(x,, vy, z,) , and hence are parallel to
each other. Thus, there is a numbdercalled Lagrange multiplier such that

grad f(xo,¥0,20) = A.grad g(xo, Yo, Zo)

To find the extreme vales gf subjected to the constraigfx, y, z) = c, follow the same
steps as of a function of two variables :

Assume thaf has an extreme value on the level surf@Ce y, z) = ¢ andVg # 0.
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Stepl Solve the equations

Constraint: g(x,y,z) =c

grad f(x,y,z) = A.grad g(x,y,z)
Or

fx(x;y;Z) = /1 -gx(x;y;z)
fy(x’y’Z) = /1 -gy(x'y'z)
Cay,2) =21.9,(x,y,2)

Step2 Evaluate the values ¢fat each point ofx, y, z) that results from step 1,

* The largest of these values computed is the maxivaloe of f .
* The smallest of these values computed is the mimmwalue off.

Example 44: Let f(x,y,z) = xyz for x >0, y >0 and z > 0. Find the maximum
value off subjected to the constraizx + 2y + z = 108.

Solution: Letg(x,y,z) = 2x + 2y + z, then the constraint g(x, y,z) = 2x + 2y +
z = 108.

Find the first partial derivatives gfandg so as to help us in getting the gradient of the
functions

Thatis,g.(x,y,2z) =2, gy(x,y,2z) = 2 andg,(x,y,z) = 1
fx(x,y,2z) = yz, f,(x,y,z) = xz andf,(x,y,z) = xy ,

Then,grad f(x,y,z) = (y2)i + (x2)j + (xy)k andgrad g(x,y,z) = 2i + 2j + k.
The equation which we use to firgy andz become

Constraint: 2x + 2y +z =108 ...... ... e cee e, (1)

grad f(x,y,z) = A.grad g(x,y,2)

Or
VZ =20 oo e e e e e (2)
XZ = 2 cev e et e e e e e e e e (3)
XY = A is s e e et e e e e e e (4)
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Type equation here.Then solving forl in terms of x, y and z, we obtain

XZ

A== cxy. i (5)

2 2

Sincef(x,y,z) =0 if x,y or zis 0, and since obviously 0 is not the maximunugaif
f subjected to the constrai2zx + 2y + z = 108, we can assume that y and z are
different from 0. Then frong5), we obtain thatx = y and z = 2y . Substituting these
values in(1) givesy = 18,x = 18,and z = 36 .

Hence, the maximum value f§18,18,36) = 11,664.

Example 45:A rectangular box without a lid is to be made frb8m? cardboard. Find the
maximum volume of such a box.

Solution: Letx ,y andz be the length, width and height, respectivelythefbox in metres.
Then we wish to maximiz€ = xyz subjected to the constrainfx, y, z) = 2xz + 2yz +
xy =12.

Using the method of Lagrange multipliers, we lookvalues of x,y,z andA such that
VV =Vg(x,y,z) andg(x,y,z) = 12. This gives the equation

Ve=2.90V,=1.9,,V, =g, and 2xz+2yz+xy =12

The equation which we use to find, y andz become

Constraint:2xz + 2yz+xy = 12 .. o cee e v e e v e (1)
VZ=A2ZHY) i e e e e e e (2)
XZ =4 (2Z+X) e ces it e e v (3)
XY = A (2X 4+ 2) vt et e (B)

ClearlyA # 0 ,otherwiseyz = xz = xy = 0, which contradicts to the constraint given in
(1). Again x,y andz # 0, otherwiseV = 0, which cannot be maximum value. Having
these fore mentioned into consideration if we sdéhaequations, we obtain = 2,y = 2
andz = 1 which gives maximum volumé = 4m?3 .

Example 46: Find the extreme values of the functifix, y) = x? + 2y? on the circle
x%2 + y? = 1 .Do the same on the disk®> + y?> < 1.

Solution: Let g(x,y) = x? + y? . The constraint ig(x,y) = x? + y% = 1.

Using Lagrange multipliers, we solve the equations
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Vf =A1.Vg andg(x,y,z) = 1. This gives the equations
fi=2.90ufy=24.9, and x*+y*=1

Then, the equations become

D I R & §
{Zx =2XA e (2)
4y = 29 e e e e e e (3)

From(2) we havex =0ori=1.
If x =0 from (1), we obtainy = +1.
If 1=1from(3), we havey =0.
If y=0 from(1), we haver = +1.

Thus, the possible points thawill have an extreme value ar¢0,1), (0,—1), (1,0) and
(—-1,0).

Evaluating the functional valueg(0,1) = 2, f(0,—1) = 2,f(1,0) = 1 andf(—1,0) = 1.

Thus, the maximum value ¢fon the circlex? + y2 = 1is f(0,+1) =2 and the
minimum value isf(£1,0) = 1.

To find the extreme values on the disk+ y? < 1, we compare the values ffat the
critical points with the values at the points oa boundary.

Sincef, (x,y) = 2x and f,(x,y) = 4y, the only critical point ig0,0).
The values on the boundary af€0,+1) =2 and f(+1,0) = 1.

Comparing these, the maximum valuefobn the diskx? + y2 < 1isf(0,+£1) =2 and
the minimum value ig (0,0) = 0.

Example 47:Find the points on the spher& + y? + z? = 4 that are closest to and
furthest from the poing3,1, —1) .

Solution: The distance from a pointx, y, z) to the point(3,1,—1) is

d=/(x—-3)2+ (y— 12+ (z+1)2

= & =x-32+0-D*+(z+1)?
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Let f(x,y,2)=d>=(x—3)2+(y—1)?+ (z+ 1)
The constraintisg(x,y,z) = x* + y* +z2 =4
Using Lagrange multipliers, we solVeéf = 1.Vg andg(x,y,z) = 4

Then, the equations become

X2 4+y2 422 =4 . (1)
20 = 3) = 2XA et ettt e e e e e (2)
200 = 1) =2V et v e e e e e . (3)
224+ 1) =220 et e (B)

Solving these we obtain the poin% \/i_l \/iT) and (—\/% —\/%\/%)

Clearly f has minimum value a(i 2 —i) and maximum value at
y iV Vi
6 2

(—— T = i) . Hence the closest point(§6=

=T ) and the furthest point is

Vit’
(-7~ )

Exercise 4.7

1. Find the maximum value of the functif€x, y,z) = x + 2y + 2z on the curve of
intersection of the plane — y + z = 1 and the cylindex? + y? = 1.

2. Find the maximum and minimum values of the fungtiany) = 4x + 6y subject
tox? + y? = 13.

3. Find the extreme values f{x, y) = 2x? + 3y? — 4x — 5 on the diske? + y? <
16.

4. Find the maximum and minimum values of the fungtiany) = x2y subject to

x% +2y? =6.
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Unit Summary:

= A function of two variables is a rule that assigmg&ach ordered pair of real
numbergx, y) in a setD a unique real number denoted fix, y). The seD is the
domain off and its range is the set of values thahkes on.

= A function of three variableg is a rule that assigns to each ordered tiiple, z)
in a domainD a unique real numbéi(x, y, z).

» |If fis a function of two variables with domdin then the graph df is the set of
all points(x, y, z) in R® such that: = f(x,y) and(x, y)eD.

» The set of points in the plane where a funcfién, y) has a constant value,
f(x,y) = k is a level curve of and the set of poin{&;, y, z) in space where a
function of three independent variables has a entstaluef (x,y,z) = k is called
a level surface of .

» Let f be a function of two variables, then the limitfgf, y) as(x, y) approches

(a, b) is L written as

lim(yy)s(ap) f(,y) =L

If for € > 0, there exists a correspondifig> 0 such that

If 0 <\/(x—a)2 + (y—b)% then|f(x,y) — Ll <c¢

= A functionf(x,y) is continuous at the poi, b) if
1. f is defined afa, b)
2. limgyy)qp) f(x,y) eXists
3. limg )o@ f(,¥) = f(a, b)
» The partial derivative of (x, y) with respect toe at the poin{(a, b) is given by

fe@b) =L =limy o KEEDTED if the limit exists

(a,b)

and the partial derivative ¢f(x, y) with respect of at the poin{a, b) is given by

Jif the limit exists.

_ limh_>0 f(a,b+h2—f(a,b)

fy(a’ b) = Z_i

(a,b)
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Similarly, we define partial derivatives of funati® of three and above variables.
When we find partial derivative with respectiave regardy as a constant and

when we find with respect tp we regardc as a constant.

* The directional derivative gf at(x,, y,) in the direction of the unit vector
u=ai+bjis

f(xg+ha,yo+hb)—f(x0,y0)
h

Dy f (x,y0) = limy,_,q , If the limit exists

And the gradient of (x, y) is the vector functio f defined by

_ L
ViGny) =grit+ 0]
And if f is a function of three variables with= ai + bj + ck, then

ha,yo+hb,zo+hc)—F (X0 Vo z0) - . .
Dy f (X0, Vo, 2o) = limy_,q [Gothayot ZZ+ D TC0Yoz) it the limit exists

And the gradient of (x, y, z) is the vector functioW f defined by

9
oy

Vitoy, ) =Zi+ZLj+ Ly

» A function f(x,y) has a relative minimum at the po{at b) if f(a,b) < f(x,y)
for all (x,y) in some region aroun@, b).

» A function f(x,y) has a relative maximum at the pofatb) if f(a,b) = f(x,y)
for all (x,y) in some region aroun@, b).

= A function f (x,y) has an absolute minimum at the pdimtb) if f(a,b) < f(x,y)
for all (x,y) in the domairy.

= A function f (x,y) has an absolute maximum at the pémt) if f(a,b) =

f(x,y) for all (x,y) in the domain of .
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Miscellaneous Exercises

1. Find the limit of the following functions

) Vx—/y+1 . X=y+2x=2.y
a. limey)-@n = dimeey)-0,0 55

x£Yy+1 x#y

x%-2xy+y?

b. lim(x'y)ﬁ(l'l) o

X#y

2. Find the point of continuity for the following futions

(6,y) = 5 (6y,2) = xZ +y? =1
a. flxy x2-3x+2 ¢.(x.y,2 x Y

b. f(x,y) =In(x? + y?)
3. Using the limit definition of the partial derivaés find the specified partial

derivatives of the following at the given points

a. f(x,y)=1—x+y—3x?%y, 9 andL at(1,2).
dx dy
b. f(x,y) =4+ 2x — 3y — xy?, 9 and®L at(-2,0).
dx dy
. Of of : .
4. Flnda andE for the following functions

a. f(x,y) =5xy—7x*—y?+3x— 6y +2
b. f(x,y) = cos?(3x — y?)
5. Find all the second order partial derivatives & tbllowing functions
a. f(x,y) =x%y+cosy+ ysinx
b. f(x,y) = tan‘l(y/x)
6. Using the chain rule find the specified partialidatives for the following at the
given points.

a. w=In(x?+vy%2+2z%),x =cost,y =sint,z = 4\/E,‘Z—V:att= 3.

b. w=In(x?+y%+22?),x =ue’sinu,y = ue’cosu,z = ue”,z—‘;v andg—: at
(u,v) = (=2,0).
7. Assumey is a differentiable function of andz is a differentiable function of
andy, then find the specified implicit differentiatiarf the following at the given

points.
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a. xe¥ +sinxy+y?—7= O,Z—zat(O,InZ).
7 0z 0z
b. xe¥ + ye —2—31r12=0,£and£at(1,ln2,ln3).

8. Find the directional derivatives of the followingnictions at the given point in the
given direction.
a. f(x,y,2) = tan_l(y/x) + \/§Sin_1(xy/2) at(1,1), u = 3i — 2j.
b. f(x,y,z) =x?>+2y?—-3z%at(1,1,1),u=i+j+k.
9. Find the gradient of the following functions at gjigen points
a. f(x,y,z) =e*Ycosz+ (y+1)sin"" x at(0,0,"/,)
b. f(x,y,z) =223 —3(x* + y?)z + tan"(xz) at(1,1,1).
10.Find the equation of the tangent line in the gipemt for the following.
a. x?+2xy—y?+ z? =7 at the poin(1, —1,3).
b. x3+3x%y? + y3 + 4xy — z? = 0 at the poin(1,1,3).
11.Find the tangent plane approximation of the follegvfunctions at the given points.
a. f(x,y,2) = e* + cos(y + z) atthe poin(0,7/,,™/ ).
b. f(x,y,z) = tan"1(xyz) at the poin(1,1,1).
12.Find the local maximum, local minimum, critical pt8 and saddle points of the
following functions.
a. f(x,y)=5xy—7x*+3x—6y+2
b. f(x,y) =2xy —x?>—-2y*+3x+4
13.Find the absolute maximum and absolute minimunhefféllowing functions
a. f(x,y) =x*—xy+ y?+ 1 on the closed triangular plate in the first quatira
bounded by the lines =0,y = 4,y = x.
b. f(x,y) =x* + xy + y* — 6x + 2 on the rectangular plate< x < 5,—-3 <
y<0.

14.Using Lagrange multiplier find the greatest and lfgsaivalues that the function
f(x,y) = xy takes on the eIIipsx%i + y; =1.

15.Using Lagrange multiplier find the points on thevawx? + xy + y% = 1 in thexy

plane nearest to and farthest from the origin.
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Chapter Five

Multiple Integrals

Introduction

In studying a real — world phenomenon, a quangiynd investigated usually depends on
two or more independent variables. So we needtenedxhe basic ideas of the calculus of
functions of a single variable to functions of seveariables. Although the calculus rules
remain essentially the same, the calculus is eicbenr. The derivatives of functions of
several variables are more varied and more infagebecause of the different ways in
which the variables can interact.

This chapter deals with the concept of functiohsewveral variables, domains and ranges
of functions of several variables, level curves Bwel surfaces of those functions and
their graphs. In addition the concept of limit amhtinuity of functions of several
variables and partial derivatives with their apglions are discussed under this chapter.
We can use functions of several variables in diffieapplications, for instance functions
of two variables can be visualized by means oflleueves, which connect points where
the function takes on a given value. Atmospheregspure at a given time is a function of

longitude and latitude and is measured in millibdsre the level curves are the isobars.

Unit Objectives:

On the completion of this unit, successful studéetsble to:
» Evaluate double and triple integrals
= Change rectangular coordinate systems to polarindnidal and spherical
coordinate systems
= Apply different coordinate systems to evaluate ipldtintegrals
» Apply multiple integrals
» Understand the idea of iterated integrals
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5.1.Double Integral
Overview
In this subtopic we will see the definition of déelintegral, the idea of iterated integrals in

the double integral and we will do different exaagbn this topic.

Section objective:

After the completion of this section, successfutienhts be able to:

= Define double integrals
= Understand the idea of iterated integrals
= Give examples on double integral

Recall that, we defined the definite integral clirgle variablefff(x)dx as a limit of the

Riemann sum3y_, f (x;")Ax;.that is

7 F O dx = limp o oy £ () Ax,

Where,a = xy < x; < x, < --- < x, = b are points in a partition of the interjal, b] and

X is a representative point in the sub — inter{ajs ;, x; .

We now apply the same idea to define a definitegral of two variables

Iz fx,y)dA
Over the rectangular regidgh= {(x,y)|a < x < b,c <y < d}
Before, defining the double integral let’s desctibe following steps.

Stepl: Partition the intervak < x < b intom — subintervals and the intervak y < d
into n - subintervals. Using these subdivisions, partitite rectangl® into N = mn cells
(sub - rectangles).

Step2: choose a representative paoimt*, v, *) from each cell in the partition of the

rectangleR and form the sum

leg=1 f O v ) AAg
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WhereA4, is the area of the'" representative cell and this is called the Riemsamn of

f(x,y) with respect to the partition and cell represévedtx, *, v, *).

Definition 5.1: If f is defined on a closed, bounded rectangular regionthexy —

plane, then the double integral fobverR is defined by

> 2 Fa i)

oo
k=1k=1

N
f f F(x,y)dA = lim Z FOt ) = lim
N—>ook 4 mn—

R =

if the limit exists.

The precise meaning of the limit in the above d#din is that for every number >

0 there is an integeg¥ such that

| Ty £G09)dA = limyyposco Sy Bes f (" 70| < &

for all integersn andn greater thav and for any choice of sample poilfts.*, v, *) in
R,.
Volume interpretation: the double integral is interpreted as volume, i¢.(x,y) >
0 on R andf (x;*, vy, )AAy is in the volume of the parallelepiped with heiglit;,”, v, ™)
and base are®4,, then the Riemann sum establishes the total volumder the surface.
le.

Vo~ Yke1 D=1 5 Yie") = limgy oo Yigeg Y=g f (™ Vi)

Remark 5.1 If f(x,y) = 0, then the volum& of the solid that lies above the rectang

R and below the surface= f(x,y) is

V= [l f(x,y)dA

EXAMPLE 1: Estimate the volume of the solid that lies abowestjuare? = [0,2] X
[0,2] and below the elliptic paraboloid = 16 — x? — 2y? . Divide R into four equal
squares and choose the sample point to be the tghecorner of

each squar8;;. Sketch the solid and the approximating rectanmdusaes.
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Solution: The squares are shown in Figure 1.
Vi

2 - »(2,2

-y

Figure 1
The paraboloid is the graph f€x, y) = 16 — x? — 2y? and the area of each square is 1.

Figure 2

Approximating the volume by the Riemann sum with= n = 2 , we have
Vo Yi, Yo fxx)
= f(L,DAA + fF(1,2)AA + f(2,1)AA + f(2,2)AA
=13(1) + 7(1) + 10(1) + 4(1) = 34

This is the volume of the approximating rectangblaxes shown in Figure 2.
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Example 2:1f R = {(x,y)|—-1 < x < 1,—2 < y < 2}, evaluate the integral

Jl, V1—x%dA
Solution: It would be very difficult to evaluate this intejdarectly from Definition of the
double integral but, becausd — x2 > 0 , we can compute the integral by interpreting it

as a volume. I£ = V1 — x2, thenx? + y?> = 1 andz = 0, so the given double integral

represents the volume of the sdiithat lies below the circular cylinder? + y? = 1 and

_ J/ll!.[t 1)

P e

- LY — L. IlI -\--\--"-‘L
(1,0,0) (0,2,0) >

above the rectangR. (See Figure 3.)

Figure 3
The volume ofSis the area of a semicircle with radius 1 timeslémgth of the cylinder.
Thus,

[ VI=x?dA=-m(1)? x 4 = 2m

5.1.1.Properties of Double Integrals
If f(x,y) andg(x,y) are continuous then

1. Constant Multipleff, cf(x,y)dA = c [f, f(x,y)dA, (any numbec)

2. Sum and Differenceff, f(x,y) + g(x,y)dA = [[, f(x,y)dA % [[, g(x,y)dA
3. Domination:

(@) ffR f(,y)dA = 0,if f(x,y) =00nR
) [f, fe.y)dA= [f, g(x,y)dA,if f(x,y) = g(x,y) on R

4. Additivity: [, f(x,y)dA = flef(x,y) dA + ffsz(x, y)dA

if Ris the union of two non — overlapping regiatsandR,
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5.1.2. Iterated integrals
Recall that it is usually difficult to evaluate gla integrals directly from the definition of
an integral, but the Fundamental Theorem of Cacplovides a much easier method. The
evaluation of double integrals from first principlis even more difficult, but in this section
we see how to express a double integral as andtenategral, which can then be evaluated
by calculating two single integrals.

Suppose thaf is a function of two variables that is integrablethe rectangle
R =[a,b] X [c,d]. We use the notatiofff(x, y)dy to mean that is held fixed and
f(x,y) is integrated with respect jofrom c tod . This procedure is called partial
integration with respect tp. (Notice its similarity to partial differentiationNow
fcdf(x, y)dy is a number that depends on the value, @ it defines a function of.
d

A = [, fx,y)dy

If we now integrate the functiaf with respect toc from a tob , we get
b b d

[ AG) = [} |17 fayydy] dx )
The integral on the right side of equation 1 idezhhniterated integral. Usually the
brackets are omitted. Thus

b rd b[ rd
0] FGoyydy dx = [7 | [ £ y) dy| dx @

means that we first integrate with respecg foom c to d and then with respect sofrom

atob.

Similarly, the iterated integral

d b af sb
[E1) faoyydx dy = [2[f7 £ooy) dx| dy 3)
means that we first integrate with respect {@oldingy fixed) fromx = a to x =b and
then we integrate the resulting functionyolvith respect toy fromy = ctoy = d.

Example 3: Evaluate the iterated integrals of the following

3 r2 3
@ [, [ x%y dy dx ) [’ %%y dx dy
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Solution:

(a) Regardingx as a constant, we obtain
fixty dy = [2%]]
< ()0 (0) =14
Thus, the functiod in the preceding discussion is givenAfx) = %xz in this example.

We now integrate this function affrom 0 to 3:

3 (2 3 2
Iy I} %%y dy dx = [} [} x?y dy| dx

3

33 x3

= [“Zx%dx = [—]
02 21p

(b) Here we first integrate with respectio

flz f03x2y dxdy = flz [f: x2y dx] dy
2« 3

= f129y dy = [9%2]j =Z

Theorem 5.1 Fubini’'s theorem): If is continuous on the rectangle
R={(x,y)la<x<b,c<y<d} then
b pd d b
I, feandA= [ [ flx,y)dydx= [ [ f(x,y)dxdy

More generally, this is true if we assume tfia$ bounded o, f is discontinuous

only on a finite number of smooth curves, and timted integrals exist.

AKU
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Example 4: Evaluate the double integrf], (x — 3y?)dA, where
R={(x,y)|0<x<21<y<2}

Solution: Heref (x,y) = x — 3y? is continuous o® and applying Fubini’s theorem and
integrating with respect tp first:

[, & =3y»dA = [} [7(x — 3y*)dy dx
= Jy lxy = y*l3dx

= foz(x — 7)dx

- ["2—2 _ 7x]z - 12

Applying Fubini’'s theorem and integrating with resptox first:

JI, (x =3y*)dA = flz foz(x —3y3)dx dy

= f12 [xz—z — 3xy2](2) dy
= [7 (2 - 6y?)dy
= [2y —2y°]} = —12
Example 5: Evaluateff, ysin(xy)dA, whereR = {(x,y)|1 < x <2,0<y <m}

Solution: If we first integrate with respect x, we get
JI, ysin(xy)dA = f: flzysin(xy)dx dy = f:[— cos(xy)]idy

= fon(— cos 2y + cos y)dy

= [—%sinZy — siny]z =0
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If we reverse the order of integration, we get

. 2 :
JI, ysin(xy)dA = [ fony sin(xy)dy dx

To evaluate the inner integral, we use integrabpparts with
u=y dv = sin(xy)

cos(xy)
x

du:dy v =

i
and sof:ysin(xy)dy = [— %(xy)]o + if: cos(xy)dy

TTCOSTIX

= - + = [sinGey)]E

b

T COS TTX sinmx

x x2

If we now integrate the first term by parts with= 1/x anddv = m cos mx , we get

dx .
du = —V = sinmx and

T COS TX sin mx sin tx
(— )dx = — — > dx
X X X

Therefore, f (_n:cosnx + sinn:x) dx = _sinn:x

x x2

sin nx]z
1

and so,fl2 fony sin(xy)dy dx = [—

sin 2w .
=-— +sint =0

Remark 5.2:ff, f(x) h(y)dA = [, f(x)dx [ h(y)dy, whereR = [a, b] x [c, d]
Example 6:If R = [0, /2] x [0,7/2], then

sinx cos ydA = /2 sin xdx /2 cos yd
I y o o ydy
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= [~ cos x]g/2 [sin y]g/2

=11=1

Exercise 5.1

1. Calculate the following iterated integrals.

a. ff fol(l + 4xy)dx dy éol fol xy\[x2 + y2dy dx
b. f02 fonrsinze de dr fol fol(u —v)>dudv

c. [\[lVsTidsadt g (5-%)dyax

d. f01 f03 e*t3Ydx dy Ifoz f01(2x + y)8dx dy

2. Calculate the double integrals over the given regio
a. [[, (6x*y®> —5y")dA,R={(x,»)|0<x<30<y<1}

b. [f, cos(x+2y)dA,R={(x,y)[0<x<m0<y"/)}

c. [fp xsin(x+y)dA, R =1[0,"/] x [0,7/5]

d. [, % dA, over the regioR = {(x,y)|1 <x<2,1<y <2}

e. [[, ycosxydA, over the regioR = {(x,y)|0 <x <m,0<y <1}
3. Find the volume of the following regions

a. The solid that lies under the plaBe + 2y + z = 12 and above the rectangle
R={(y0<x<1-2<y<3}

b. The solid that lies under the hyperbolic paraboloig 4 + x* — y? and above
the square®r = [—1,1] x [0,2].

c. The solid lying under the rectangle parabole’ijzal+ %2 + z = 1 and above the
rectangleR = [—-1,1] x [-2,2].

d. The solid enclosed by the surface 1 + e* siny and the planes = +1,y =
0,y =m, andz = 0.

e. The solid enclosed by the surface: 2 + x? + (y — 2)? and the planes

x=11,y=0,y =4,andz = 1.
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5.2.Double Integrals over General Regions

Overview
In this subtopic we study the different regionsniregrating double integrals and we will

see different examples concerning on this.

Section objective:

After the completion of this section, successfutienhts be able to:

= Understand the different regions which helps ustegrate double integrals
= Evaluate double integrals in those regions

A plane regiorD is said to be dfype I if it lies between the graphs of two continuous

functions ofx, that is,

D={(xylasx<bgi(x) Sy<=<g.(x)}

Whereg,andg, are continuous ofu, b]. Some examples of type | regions are shown in

Figures 4, 5 and 6.

¥ y y
¥ = galx) ¥ = gaix} Y=galx)

¥Y=gix) y=gq,lx} |

oy e
- E—

By t|o e aea
B |————

Figure 4 Figure 5 Figure 6
If £ is continuous on a type | regi@hsuch that

D={(xy)la<x<bg,(x) <y < g,(x)}, then

__ b rg20)
ffD f(x’y)dA - fa fgl(x) f(x’y)dy dx
We also consider plane regionstgpe I, which can be expressed as

D={(ylcsy=<dh(y)=<x<h(y}
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Whereh,andh, are continuous oft, d]. One such region is given below.

¥4

0 x
Figure 7

If fis continuous on a type Il regi@such that

D ={(y)lc <y < dhG)<x < hy(y)}, then
[I, fCayda = f7 22 fGoy)dx dy

Example 7: EvaluateffD (x + 2y)dA, whereD is the region bounded by the parabolas

y = 2x% andy = 1 + x2.

Solution: The parabolas intersect whzn? = 1 + x2, that isx? = 1, sox = +1. We

note that the region, sketched in Figure 8, igp& tyregion but not a type Il region

Figure 8
and we can write

D={(xy)|-1<x<12x2<y<1+x?%
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Since the lower boundary js= 2x? and the upper boundaryyis= 1 + x2, then
2
[l Ce+2y)dA = [, [ (x + 2y)dy dx
_rt 271+x2
= [1Ix@ +x%) + (1 +x%)? — x(2x?) — (2x*)?] dx

= f_ll(—3x4 —x3+x+ 1)dx

1

3 2
+2T+Z+x| =2
3 2 4 15

x4

=[-35-%

Example 8: Find the volume of the solid that lies under taegboloidz = x2 + y? and
above the regioP in thexy —plane bounded by the line= 2x and the paraboka = x2.

Solution:

Case I: consider the followirfggure

(2,4)

o

Figure 9
As we can see from the above graph D is a typgidneand
D = {(x;:)’)lo <x< 2’x2 < y < Z.X'}

Therefore, the volume under= x2 + y? and above is
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V= [[,(x* +y*)dA = foz fxzzx(x2 + y?)dy dx

3

= foz [xzy + y?]: dx

3
= foz [xZ(Zx) + g — x2x?% — —(x:) ] dx

6 3
_ 2(—x——x4+143x)dx

Case ll: consider the following figure

Figure 10

As we can see from the above graph D is a typegibn and

p={x|o<y<ssy<x<y}

Therefore, the other expression for the volume is

V= ﬂD(xZ +y2)dA = f: fl\f(xz +y¥)dx dy
2
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_ [2y5/2 2y7/2 3 13y4]4 _ 216
0 35

15 7 96

Figure 11
This is the graph of together withD

Exercise 5.2

1. evaluate the following iterated integrals

a. [ [" xy? dxdy gy (e = y)dy dx
b. fon/z focosg esndr dg ffoz fyzy xy dx dy

C. fol f;z(l + 2y) dy dx af, f;xsiny dy dx

d. fol foyz 3y3e*” dx dy h.f03/2 f09_4x2 16x dy dx

2. Evaluate the double integrals over the given region
a f[, y*dAD={xy|-1<y<1,-y-2<x<y}
b. [f, ¥*¢* dA, D ={(x,y)|0 <y <40<x<y}

c. Jf, x*dA,D={(x,y)[1<x<e0<y<Inx}
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d. [, x/y?—x2dA, D ={(x,y)|0<y<10<x <y}
e. [, § dA, over the regio in the first quadrant bounded by the lines
x,y=2x,x=1,x = 2.
f. Jf, 3costdA, D ={(w,t)|0 <u<sect,—T/3<u<T/s}
3. Find the volume of the following solid regions.
a. Under the planer + 2y — z = 0 and above the region boundedjby x and
y=x"

b. Under the surface = 2x + y? and above the region bounded»y y? and

x=y3

c. Bounded above by the cylindee= x? and below by the region enclosed by the
parabolay = 2 — x2 and the liney = x in thexy —plane.
d. Under the plane = x + 4 and below palane bounded by the parabola
y = 4 — x? and the liney = 3x.
5.3.Double Integrals in Polar Coordinates
Overview
In this section we will see the relation betweemnriactangular coordinate system and the
polar coordinate system and we will study how deubtegrals are evaluated using polar

coordinates.

Section objective:

After the completion of this section, successfutients be able to:

= Justify the relation between the rectangular addrpmordinate systems
= Evaluate double integrals using polar coordinates

Suppose that we want to evaluate a double intg(g{af(x, y)dA, where R is one of the

regions shown in Figs 12 & 13. In either case thgcdption of R in terms of rectangular

coordinates is rather complicated but R is eaglcdbed using polar coordinates.
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R

] X

A R={r@|0=r=1,0=8=2rw BIR={ir.8) |1=r=2,0= f= 7|

Figure 12 figure 13

Now consider the following figure

Pir, 8) = Pix.¥)

lhl 'H

Figure 14

Recall from Figure 14 that the polar coordindte®)of a point are related to the
rectangular Coordinate€s, y) by the equations

2 =x?% + y? X =171cos6 y =7rsinf

The regions in Figure 12 & 13 are special casespoiar rectangle
R={(r,0)|la<r<ba<8<p}

which is shown in Figure 1%n order to compute the double integfﬁzj f(x,y)dA, where

R is a polar rectangle, we divide the interglb] into m subinterval$r;_,, ;] of equal

width Ar = (b — a)/m and we divide the intervgk, ] into n subinterval$s;_,, 6;] of
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equal widthAf = (B — a)/n. Then the circles = r; and the ray$ = 6; divide the polar

rectangleR into the small polar rectangles shown in Figure 16.

f=8.
"-.\ r.J 8,
r=b R \ .
o=p LTSRS
R
! 'lf LTy
J -.-'__?.'_"' / lr !
- 0= "I"'r':{,f/ . .
) S
F f_'r -‘_r'_ - 'K/{-’I":.-J:_:.’:' -
A= &=z
i} i}
Figure 15 Figure 16

The “center” of the polar sub — rectangle
Rj={(r,0)|ri-1<r<mn,0_,<0<6}
has polar coordinates
r = %(ri—l +r) g = %(9}'—1 +6;)

We compute the area &f; using the fact that the area of a sector of decisith radius r
and central anglé is%rze. Subtracting the areas of two such sectors, ebathich has

central angle\@ = 6; — 6,_,, we find that the area &;;is
1.2 1. 2 12 2
AAL' = Eri AB — Eri—l Af = E(T'i —Ti—1 )A9
= %(ri +1;_)(r; —1i_1)AB = 1;"ArA6

= AAl = T'L'*AT'AQ

Now,

Ry Xiey f(ri* cos 6,7, 1" sin6;") AA; = ¥, Xy f (17 cos 0;", 1" sin 6,7) r;*Ar AG
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Then, [[, f(x,y)dA = limy, peo 2721 X7q f (17 c0Os 6;", 1" sin 6;") AA;

= liMyp psoo jmq Dj=r f (177 cOS ;7,777 sin 0;") 1" ArAO

= fff;f(rcose,rsine)rdr dé

Definition 5.2: If f is continuous on a polar rectangle R givendby a <r < b,a <

0 < B, where0 < f — a < 2m, then

/I, fx,y)dA =fff;f(rcose,rsin9)rdr do

Example 9: Evaluatq’fR (3x + 4y?)dA, where R is the region in the upper half-plane
bounded by the circles? + y? = 1 andx? + y? = 4.

Solution: The regionR can be described as
R={(x,ly=01<x?+y?<4}

It is the half-ring shown in Figure 13 and in pataordinates it is given by < r < 2,
0 < 6 < m, therefore
T 2 .
JI, Bx +4y*)dA = [ [[(3rcos® + 4r?sin® 6) r dr db
= fO" f12(3r2 cos O + 4r3sin? 9) dr d6

= fon[r3 cos @ + r*sin? 9] d6
= f0”(7 cos 8 + 15sin? 8) do
= fon [7 cos O + 175 (1 - cos 29)] do

= [7sin9+159—1:551n29]

s
2 0
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Remark 5.3:If f is continuous on a polar region of the form

D={(r0)a<06<pB,h(6)0 <r<hy(0)}

Then, I, f(x,y)dA=fff,iz((:))f(rcose,rsina)rdr do

Example 10:Find the volume of the solid that lies under thegpoloidz = x? + y?,
above thexy -plane, and inside the cylindef + y? = 2x.

Solution: The regionD is given in the following figure

(x— 1) +y =1
for r=2cos &)

/

[}

FrguL7

The solid lies above the digkwhose boundary circle has equatidn+ y? = 2x or, after

completing the squaréx — 1)? + y2 = 1 (see figure 17 and 18).

Figure 18
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In polar coordinates we hawé + y? = r?andx = r cos 6, so the boundary circle
becomes? = 2rcos @, orr = 2 cos 6.
Thus the diskD is given by

D={(r0)|-n/2<060<r/2,0<r<2cosb}

and therefore,

2cosf
V= Jf, 6+ y)da = 70 50 i dr do = [ 2] ao

= 4f::fz cos*6do =8 fon/z cos* 6 do

_ 8f:/2 (1+c2520)2 de

- Zf:/z[l+2c0529+%(1+cos49)]d9
2 2

=2[26 +sin26 +%sin49]z/2 =29 (3=

Exercise 5.3

1. Evaluate the following integrals by converting thieto polar coordinates

a. [[, 2xy dA, D is the portion of the region between the circlésadius 2 and

radius 5 centered at the origin that lies in thestfiquadrant.

b. [f, e***¥*dA, D is the unit circle centered at the origin.
2. Determine the area of the region that lies inside 3 4+ 2sin 8 and out side- = 2.
3. Determine the volume of the region that lies urterspherec? + y? + z? = 9,
above the plane = 0 and inside the cylindex? + y? = 5.
4. Find the volume of the region that lies inside x? + y? and below the plane
z = 16.
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5.4. Applications of Double Integrals

Overview
In this section we will see the different applioat of double integrals, such as areas and

surface areas of different regions, mass and cehteass of different solid regions.

Section objective:

After the completion of this section, successfutienhts be able to:

= Apply double integrals
= Exercise examples on the applications

We have so many applications of double integramputing volumes as we have seen
before, finding areas of surfaces, physical appboa such as computing mass, electric

charge center of mass and moment of inertia are sdrapplications of double integrals.

5.4.1. Areas of Bounded Regions

Definition 5.3: The area of a closed, bounded plane regios

A=[f, da

Example 11:Find the area of the regidhbounded by = x andy = x?2 in the first
guadrant.

Solution: We sketch the region as in thgure below

Figure 19
Then, we calculate the area of the region as falow
_ _ 1l ry=x
A=[[, dA= [ 2 Ay dx
= fol[y],dex
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= [yt —xx = [ -] =
5.4.2.Center of mass in double integral
Consider a lamina with variable density. Supposddimina occupies a regiédnand has
density functiorp(x, y). The moment of a particle about an axis is defaethe product
of its mass and its directed distance from the. 8Xis divideD into small rectangles, then
the mass oR;; is approximately (x;;*, y;;*)AA, so we can approximate the moment of

R;j with respect to the -axis by

[pCxij* yi;DAA] Y

If we now add these quantities and take the lisithe number of subrectangles becomes

large, we obtain thenoment of the entire laminabout the x-axis:
M, = llmmn_)oozl =myJ= nyu p(xi;", yi; )AA
= J[, yp(x,y)dA
Similarly, themomentof the entire laminabout the y-axis
My, = limy, ;0 DT Y2 o1 X p (gt yi)AA

= [, xp(x,y)dA

We define the center of magg ) so thatmx = M,, andmy = M,

Definition 5.4: The coordinateéx, y) of the center of mass of a lamina occupying the|

regionD and having density function(x, y) are

_ M — X
F=2=—([ xp(xy)dd and y=-2=—[ yp(x,y)dA

Where, the mass is given by

m = [f, p(x,y)dA

By Kibrom G. and Abrha L 196 AKU



Applied Mathematics Il

Example 12:Find the mass and center of mass of a triangaiaima with vertices
(0,0), (1,0) and(0,2) if the density function ig(x,y) =1 + 3x + y.

Solution: The triangle is shown iRigure 20. (Note that the equation of the upper

boundary igy = 2 — 2x),

0,2+

3 1)

= \%'16/

D

4
)
0 1.0V X

Figure 20

Then the mass of the lamina is

m = [[ p(x,y)dA =[] [ 1+ 3x +y)dy dx

_ 1 yz 2—-2x
= fo [y+3xy+7]0 dx

— 4 (Y1 a2V — _B) s
=4[, x)dx—4[x 3]0—3
and then the coordinates of the center of mass are

_ 1 3 (1 (2-2x
X = ;ﬂD xp(x,y)dA = Efo fo (x + 3x% + xy)dy dx

3 1 21272x 3 (1
==/, [xy + 3x%y + xy?]o dx == [ (x —x*)dx

_3[9{2 x4]1_3
T2l aly s

— 1 3 1 p2-2
y=—II, ypCy)dA == [ [777 (v + 3xy + xy?)dy dx
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_r1fy? y? y31272% _1r 2 3
_fo[?+3x7+x?]0 dx—zf0(7—9x—3x + 5x°)dx

T

3 4
=1[7x—9x——x3+5x— =
4 3 4lg 16

Therefore, the center of mass is at the p@m%l—z).

Example 5.13:A thin plate covers the triangular region bountdgdhex —axis and the
linesx = 1 andy = 2x in the first quadrant. The plate’s density atpbet (x, y) is

p(x,y) = 6x + 6y + 6. Find the plate’s mass, first moments, and cesftarass about the
coordinate axes.

Solution: we sketch the plate as follows

L
—

Figure 21
Then, the plate’s mass is

m=[[ p(x y)dA= fol fozx(6x + 6y + 6)dy dx
1 yz 2X
= fo [6xy + 37+ 6y]0 dx

_ f01(24x2 + 12x)dx
= [8x3 + 6x2%]} = 14

The moment about the— axis is
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1 02
My = [f yo(x,y)dA = [ [ 7 (6xy + 6y* + 6y)dy dx
= fol[Bxy2 + 2y3 + 3y?]%*dx

_r! 3 2

= [, (28x% + 12x?)dx

= [7x* + 4x3]§ = 11.
and similarly, the moment about the- axis is

My = [f, xp(x,y)dA = fol fozx(6x2 + 6xy + 6x)dy dx
= f01[6x2y + 3xy? + 6xy]3* = 10.

The coordinates of the center of mass are therefore
v — Mx

_ 11
X=—=—==- and y=—==—
m 14 7 m 14

5.4.3. Surface area

Definition 5.5: Let R be a vertically or horizontally simple region datlf have

continuous partial derivatives on R. then, theatefarea S of the graph of f Bris

defined by
S=Jf, /fxz+fy2+1

Example 14:Find the surface area of the paraboloid 1 + x? + y? that lies above the

unit circle.
Solution: Here, the regio®: x* + y* < 1. That is
R={r0)0<r<10<6 < 2n}

andf(x,y) =z=1+x%+y?
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Then,f, = 2x andf, = 2y.

Therefore, S = [, ( /fxz +£,2+ 1) dA = [[, (J(2x)? + (2y)? + 1)dA

= ff, V4(x2 +y?) + 1dA

= [ [{(rZ ¥ 1) rdr d6
= [ Vutrde =2 7 [ Vudu de
= %f;”% [(4r2 + 1)31(1) de = 1—12f02” (5% — 1) do
-2l
==(5v5-1)

Hence, the surface area§s= %(5\/5 -1)

Exercise 5.4

1. Sketch the region bounded by the given lines angeswand then calculate the
area of this region for the following.
a. The coordinate axes and the line-y = 2
b. Thelinesx =0,y = 2x andy = 4
c. The parabolax = y? andx = 2y — y?
d. The parabolax = y? — 1 andx = 2y? — 2
e. The parabolax = —y? andy = x + 2
2. Find the mass and center of mass of the laminadbatpies the regioD and has
the given density functign
a. D={(x,y)]0<x<2-1<y<1} plx,y) = xy?
b. D={(xy)|0<x<a0<y<b}plxy) =cxy
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c. D= {(x,y)| 0<y< sin(”x/L),O <x< L};p(x,y) =y
d. Disbounded by =+/x,y = 0andx = 1; p(x,y) = x
e. D is bounded by — axis and the lineg = x andy = 2 — x; p(x,y) = 6x +
3y +3
f. D is bounded by the parabolgs= x? andx = y?; p(x,y) = Vx
g. D is bounded by the lines= 6 andy = 1 in the first quadrantp(x,y) = x +
y+1
5.5.Triple integrals
Overview
In this subtopic we will see the definition of tegntegral, the idea of iterated integrals in
the triple integral and we will study the differgsgions which help us to evaluate triple

integrals.

Section objective:

After the completion of this section, successfutienhts be able to:

= Define triple integrals
= Understand the different types of regions to iraégtriple integrals

Let’s first deal with the simplest case wher¢ idefined on a rectangular box:
B={(x,y,2)l]a<x<bc<y<dr<z<s}

The first step is to dividB into sub-boxes. We do this by dividing the interjeglb] into
| subintervaldx;_4, x;] of equal widthAx, dividing [c, d] into m subintervals of widtiy ,
and dividing[r, s] into n subintervals of widtlAz . The planes through the endpoints of

these subintervals parallel to the coordinate @aieade the boxB into Imn sub-boxes

Bije = [xi1, %] X [yj—1,¥;] X [Zr-1, 2]

which are shown in Figure 22. Each sub-box hasme|AV = AxAyAz

Then we form thériple Riemann sum

I
i=1 Z}”:l k=1 f e Vi Zijie”)
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Where, the sample poiQk; ", yijk", Zijk ") IS INBjjy,.

r ijk "
{ Az
|| el 0 L .:

2 .“‘:j'---_ __d--""#?.

Figure 22

Definition 5.6: The triple integral of over the region or boR is

W, Oy, 2)dV = 1imy e Xty 2ty Yo f (i’ Vi Zijie™) AV

If the limit exists

Theorem 5.2 (Fubini’s theorem for triple integrals) If f is continuous on the

rectangular box
B =[a,b] X [c,d] X [r,s], then

fffB fx,y,2)dV = f: fcd f;f(x, y,z)dx dy dz

The iterated integral on the right side of Fubifilleorem means that we integrate first

with respect toc (keepingy andz fixed), then we integrate with respecttdgkeeping
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z fixed), and finally we integrate with respectztoSimilar to the double integral we can

interchange the variables of integration, but #sailt is the same in all cases.
Example 15:Evaluate the triple integrdff, xyz*dV, whereB is the rectangular box
given by

B={(xy,2)]0<x<1,-1<y<20<2z<23}
Solution: We could use any of the six possible orders @grdtion. If we choose to

integrate with respect to, theny , and therz, we obtain

302 (1
I, xyz*av = | [~ [, xyz*dx dy dz

(3 2 xzyz21
_fo f—l[ 2 ]Odde

2 yz?

3
=, [, -dydz

= f03 [3’2422]: dz
- (L= 2] =2

Now we define thériple integral over a general bounded regiorE in three dimensional
space. We restrict our attention to continuoustions and to certain simple types of
regions. A solid region is said to betgpe 1if it lies between the graphs of two
continuous functions of andy, that is

E = {(X'Y'Z)|(X;Y)€D;u1(x')’) =z< uZ(x'y)}

whereD is the projection of onto thexy —plane as shown in Figure 23. Notice that the
upper boundary of the soldl is the surface with equatian= u,(x, y), while the lower
boundary is the surface= u, (x,y).
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Z= U,y (X, Y)

g | ee—

e
/ | ) __::
X D |

Figure 23 A type 1 solid region

Then, the triple integration over this region iinked as follows

[l fFeoy2av = [f, [0 f,y,2)dz| da

1(x,y)

In particular, if the projectio® of E onto thexy-plane is a type | plane region (as in
Figure 24)

Then,

E={x,y,2)la<x<b,gi(x) Sy < g,(x),u;(x,¥) <z <u,(x,y)} and

_ (b 920 (uz(xy)
ﬂfE fGy,2)dv = fa f 1(x) Jui(xy) fCy,2)dz dy dx

Y

Figure 24 A type 1 solid region where pinejection D is a type | plane region
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On the other hand 1 is a type Il plane region (as in Figure 25),
Then,
E = {(x,y,zﬂc < y < d;h1(3’) Sx < hz(x)ﬂh(x,y) <z< uz(xJ’)}

and the triple integral becomes

_rd rha(y) pua(xy)
fffE f(X,y,Z)dV - fC fh1(y) uy (%) f(x,y,Z)dZ dx dy

— ke e ——

x &

™,
—_——————

Figure 25 A type 1 soligjien with a type |l projection

Example 16:Evaluatefff, z dV, whereE is the solid tetrahedron bounded by the four

Planesx =0,y =0,z=0andx+y+z=1.

Solution: First consider the following two figures
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) Ya
(0,0, 1) | +
| ,,321—_1'—1. Pl
X
! : D
0o _ {0, 1,0)
ff/L* s
b =
(1,0, ‘:L"'f = i ' U yv=0
L
Figure 26 Figure 27

When we set up a triple integral first we haveitawtwo diagrams: one of

the solid regiorE (see Figure 26) and one of its projectidon thexy —plane (see
Figure 27). The lower boundary of the tetrahedsothé plane = 0 and the upper is the
planex + y+z=10rz=1—-x —y, we useu;(x,y) = 0 andu,(x,y) =1 —x —y.
The planex + y +z=1andz = 0 intersectinthe line + y =1o0ory =1 —x in the

xy —plane and therefore,

E={(y2)0<x<10<y<1-x0<z<1-—-x-y}

1 (1-x (1-x— 1 1-x [z2]17X7Y
so, [, zav=[ [ [ zdzdydx =] [ "[27]0

dydx
= %fol fol_x(l —x—y)%dydx

= % fol [_ (1—x3—y)3]:_x dx

_ 1l N3 _1_(1—x)41_i
_6f0(1 x) dx_6[ 4 ]0_24

_ L
Therefore [[f, zdV = —

A solid regionE is oftype 2if it is of the form

E = {(x;y;Z)K)"Z)ED'M(%Z) S X S uZ(ny)}
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Where, D is the projection of E onto the —plane (figure 28) and the back surface is

x = u,(y, 2), the front surface is = u,(y, z) and the integral becomes

[l feoy.2av = [, [[227) fx,y, 2)dx] da

T o
V= u,(x.2)
0l - D Wy - x
- P -' '-.\___.. : > f} J.l
- '\--\.H-_f = E .
f ,' P ¥ = i,lx,z) ¥
X=it5(Y,2 1
Figure 28 A type 2 region Figure 29 A type 3 region

Finally, atype 3region is of the form
E = {(x,y,z)l(x,z)eD,ul(x,z) S y S uZ(xi Z)}

Where,D is the projection of onto thexz —plane,y = u,(x, z) is the left surface, and

y = u,(x, z) is the right surface (see Figure 29). For thigetgpregion we have

I, fy,z)dv = [, [f;z((;’zz))f(x,y, z)dy] dA

Remark 5.4: In the type 2 and type 3 there may be two possikpeessions for the

integral depending on whethBris a type | or type Il plane region.

Example 17:Evaluatefff, vx? +z2dV, where isE the region bounded by the paraboloid

y = x? + z2 and the planey = 4.

Solution: The solidE is shown in Figure 30. ConsidEras a type 3 region. As such, its

projectionD; onto thexz —plane is the disk? + z? < 4 as shown in figure 31

Then the left boundary of E is the parabolpie: x? + y? and the right boundary is
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the planey = 4, so takingu, (x, z) = x? + z2 andu,(x, z) = 4.

Figuse The regio&

Then,
JIl; Vx?+22dv = [f, [f;erZz\/xz + szy] dA

= 24— 2 - ) VT ¥ 22dz dx

To evaluate the integral it is easier to conveqdtar coordinates in thez- plane,

x =rcosf,z =1rsinf.so,

2 pV4-—x2 2w (2
J j (4—x2—zz)\/x2+zzdzdx:j j (4—rHrrdrdd
—2Ja—x2 o Jo

2w 2,2 .4 _ ﬁ_iz_usn
= [, a6 [, 4r r)dr—Zn[3 7, =5

= [l VaZ+z2dv ==

15
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=y

Figure 31  Projection.on—plane

Exercise 5.5

1. evaluate the iterated integrals of the following
a. fol fol fol(x2 +y% +2z%)dzdydx

b. [ fy cos(u+v+w) du dv dw

O

: fleflefflnrlnslnt dt dr ds

o

: fol fOZ f;ﬁz 6xz dy dx dz

: fon/z foy fox cos(x +y +z) dz dx dy

D

f. fol f01—x2 f:_xz_y x dz dy dx

1 (4-y? (2
9. Jy ety dzdxdy

2. Evaluate the following triple integrals over thevgn regionk.
a [ff, 2xdV,E={(xy,2[0<y<20<x<.4-y2,0<z<y}
b. [ff. zdV,E is bounded by the parabolaid= 4x* + 4y*and the planec = 4.
c. [Jlf, ydV,E isbounded by the planes= 0,y = 0,z = 0 and2x + 2y +z =
4.

d. [ff, x*e” dV,E is bounded by the parabolic cylinder 1 —y* and the

planesz = 0,x = 1 andx = —1.
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e. [[f, zdv,E is bounded by the cylindgf + z* = 9 and the planes = 0,y =
3x andz = 0 in the first octant.
5.6. Triple integrals in cylindrical and spherical coordinates
Overview
In this subtopic we will study the relations betweectangular and cylindrical coordinate
systems, the rectangular and spherical coordiyaterss; we study how can we evaluate

triple integrals using cylindrical and sphericabotinates.

Section objective:

After the completion of this section, successfutienhts be able to:

= Justify the relations between the coordinate system
= Evaluate triple integrals using cylindrical and spbal coordinate systems

5.6.1.Triple integrals in cylindrical coordinates

In thecylindrical coordinate system a pointP in three-dimensional space is represented
by the ordered triplér, 6, z) where(r, 8)is the polar representation of the projectio® of

onto thexy —plane and: is the directed distance from thg —plane toP.

- P| r. H.: 1

v ¥ % (r,8,0)
Figure 32 Thdirgrical coordinates of a point

To convert from cylindrical to rectangular coordes we use the equations

x =rcos6 y =rsinf zZ=z
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But, to convert from rectangular to cylindrical cdimates, we use
r? = x?% + y? tan9=% z=1z

Example 18:(a) Plot the point with cylindrical coordinat€s2m/3,1) and find its
rectangular coordinates.

(b) Find cylindrical coordinates of the point wictangular coordinat€8, —3, —7).
Solution: (a) The point with cylindrical coordinaté3,2rt/3,1) is plotted in Figure 33.

Then, the rectangular coordinates are

x=rc059=2cosz?”=2(_71):—1

y=rsin9=25in2§:2(ﬁ)=\/§

2

z=1

Hence, the point in rectangular coordinaté+d, /3, 1).

(b) The cylindrical coordinates are
r2=x2+y? =r=\/x2+y2?
=>r=432+4(-3)2=3/2

tanf =2 === —1,500 = Z + 2nn
x 3 4
z=-7

Therefore, the points in cylindrical coordinates enfinitely many by taking different

values ofn. For instance(B\/Z%”,—7), (3\/5, —%,—7) and so on.
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Figure 33

Suppose thak is a type 1 region whose projectibron thexy —plane is conveniently

described in polar coordinates (see Figure 34)sapgose thgf is continuous and
E={(xy 2)|(xy)eD,us(x,y) < z < u,(x,y)}

WhereD is given in polar coordinates by
D={(r0)a<0<p,h(0) <r<h,(0)}

Then, the triple integration

[l feeynav = [f, [[25 fy,2)dz| da

1(xy)

is represented by

B h2(60) ruz(rcosf,rsin@) .
I, f&y,z)dv = [ fh12(9) ulz(r cos 6 5in 8) f(rcos8,rsin@,z)r dz dr d6

Definition 5.7: The formula given by

B h(8) fuy(rcos,rsinbh)
ff flx,y,2)dV = f f f(rcos@,rsin@,z)r dz dr do
E a “h

1(0) Yuq(rcosfO,rsinf)

is called triple integration in cylindrical coordites.
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I = Us(X.¥)
i
. = "
L i
E . |
| %,
|1 | \ |
Ll jz=u(x )|
F":':I-"H:IH”— E | | |
P T ey
P I~ | e=p | 5
,/'/ 8= | D .
X ¥ ] .
i:h_.}ﬁ'l
Figure 34

Example 19:A solid E lies within the cylindex? + y? = 1, below the plane = 4, and
above the paraboloiel= 1 — x? — y? (See Figure 35). The density at any point is

Proportional to its distance from the axis of tiggncler. Find the mass .

Solution:

Figure 35
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In cylindrical coordinates the cylinder#s= 1 and the paraboloid is= 1 — 12, so we can
write

E={(r0,2)]0<0<2m,0<r<11-71r2<z<4}
Since the density &, y, z) is proportional to the distance from the-axis, the density

function is given by

p(x,y,z) = K\x? + y> = Kr

WhereK is the proportionality constant. Therefore, thessnaf E is
m = [If, KyxZ+y2dv
= fozn fol ff_rz(Kr) rdzdrdé
= [ [ Kr2[4 — (1 - r)]dr d6
=K fozn do f01(3r2 +r*)dr

_ 127K
s

= 2nK [r3 + %5](1)

12K
5

Hence, m =

5.6.2.Spherical coordinates
In spherical coordinates we represent a p@ihby order triple(p, 8, @) as shown in figure
36,wherep is the distance from the origin to the poinBRs the same angle as in
cylindrical coordinates and is the angle between the positive-axis and the line

segmenODP with p > 0and0 < @ < 7.
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 Pip, B, &)

Figure 36  The spherical ciates of a point

The spherical coordinate system is especially ligeforoblems where there is symmetry
about a point, and the origin is placed at thisipdihat is when we represent regions like
spheres and cones.
The relationship between rectangular and sphecmaidinates can be seen from Figure37.
and we have

z=pcos® r=psin@®
But, x =rcosf andy = rsin 6

'Q I

Figure 37
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To convert from spherical to rectangular coordigate use the equations
X =psin@cosf y=psin@sinf z=pcos®

To convert from rectangular to spherical coordisate use the equations

Z

Vx2+y2+z2

p?=x%+y?+ z2 tan9=% cos @ =

Example 20:(a) The poin(2,/4,7/3) is given in spherical coordinates, then find its
rectangular coordinate.

(b) The point(0,2v3, —2) is given in rectangular coordinates. Find the sphé
coordinates of this point.

Solution: (a) the rectangular coordinates are

2 2

x =psin@Pcosf = Zsingcosgz Z(E) (ﬁ) = \E

y =psin@sing = ZSingsingzz(g) (_) .

z=pcos®=2cosg=2(—)= 1

Hence, the point in rectangular coordinaté\ig,\/g, 1)
(b) The cylindrical coordinates are
p=+x2+y2+2z2= JO +(2V3) +(-2)2 =4

z -2 -1 21
COS@—;—T—7, @——

cos O =

psin® -

Thus, the point in spherical coordinat€4sm/2,2m/3).
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Triple integration in spherical coordinate
In the spherical coordinate system the rectandydaris aspherical wedge
E={(p,0,0]a<p<ha<B<pc<P<d}

Wherea > 0, — a < 2m,d — ¢ < m. Now divideE into small spherical wedgd;, by

means of equally spaced spheses p;, half — plane® = 6; and half — cone® = @,.
So, from figure 3&n approximation to the volume Bfj; is given by
AVijx = (8p)(p;AB) (p; sin @y AB) = p;? sin @y ApAOAD
With the aid of the Mean Value Theorem the volurhetg, is given exactly by
AV = pi’sin@, ApAOAD

Where,(5;, 8, B« ) is a point inE; ;; and let(x;x", vijx", zij”) be the rectangular

coordinates of this point, then

fff f(x y»Z)dV - 11Inlmn—mo 21 12 1Zk lf(xl]k yUk »ZUk )AVUk

I m n
i Z Z Z f (Bisin®ycosby, pisin@ysind;, picosy) pi’sin, ApAOAD

i=1j=1k=1

Finally, if we evaluate the above limit then we tfet following formula.

Definition 5.8: The formula given by

W fey,2)dv =
fcd ff f:f(p sin @ cos 8, p sin @ sin @, p cos ®)p? sin @dp dO d®,Where E is spherical

wedge given by

E={(p,0,0)a<p<ba<6<p,c<@<d}iscalled triple

integration in spherical coordinates.
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. )
p;sin b, AG '\y“\.\
\ ¢ \
MEN
y, I § |
-/(z - iy
z e
L b P et ¥
SAAG -1 1
{Ité:'-_"f' - P Ad

riA8=p;sin, AR
Figure 38

Example 21:Evaluatefff, eV&7+y*+2%% gy where B is the unit ball
B={(x7y,2)|x*+y*+2z2<1}

Solution: Since the boundary of is a sphere, we use sphedoadinates:
B={(p,0,0)|0<p<10<6<2m,0<0<n}

With p2? = x2 + y? + z2, therefore,

fffB eV CEHED gy = f: f027T fol eV p2sin pdp do dp
= [ singd® [" d6 [, p*e”’dp
1
= [ cos @]F (2m) [1393]
3 0
2

= 37‘[(6— 1)
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Exercise 5.6

1. Evaluate the cylindrical coordinate integrals oétfollowing.

fznf f (r sin? @ + z2) dzr dr d6

(=2

s f/”f\/—zdzrdrde

2 3+24
fo”fo/ano " dzr drdo

o

A " dzr dr do

Q

e. fozn f03 fﬂ}:_ﬂ dzr dr do

2. Write the following equations in spherical coordies.

a x’+y’+(z-1%*=1 de? +22 =9
b. z=x?+y? € —2x+y*+2z2=0
c. z*=x"+y’ A+2y+32=1

3. Evaluate the spherical coordinate integrals of tbkowing.
a. foznf”/4 fseC(Z)(p cos @)pZ Sin@ dp d@ d9

b. [T [T 2% p2 sing dp do d6

o

3
N /zfoﬂfol 5p3 sin® @ dp d@ do

7 1774 [2(p cos @)p? sin@ dp d@ do

o

@

s
fOZTL'fO /3 fszecm?)pZ Sil’l@ dp d@ de
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5.7. Applications of triple integrals
Overview
In this section we will see the different applicais of triple integrals, such as volumes,

mass and center of mass of different solid regions.

Section objective:

After the completion of this section, successfutienhts be able to:

= Apply triple integrals
= Evaluate different examples on the applications

5.7.1. Volume

Recall that iff (x) = 0, then the single integrg(ff(x) dx represents the area under the
curvey = f(x) from ato b, and if (x,y) = 0, then the double integrﬂD f(x,y)dA
represents the volume under the surtaeef (x,y) and aboveD . The corresponding

interpretation of a triple integrdff. f(x,y,2)dV, wheref (x,y,z) = 0 is not very useful

because it would be a four dimensional object &atlis very difficult to visualize.
But with special case whefdx, y,z) = 1, for all points inE, then the triple integral

represents the volume gt

V) = [, dv

Example 22:Use a triple integral to find the volume of theabedrorl" bounded by the
planesx + 2y +z=2,x =2y, x =0and z = 0.

Solution: The tetrahedrof and its projectio® on thexy —plane are shown in Figures

39 and 40. The lower boundary of T is the plare 0 and the upper boundary is the plane
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x+2y+z=20rz=2—x—2y.

P

10,0,2)

VA
x+2y=2

1+ fory=1— x/2)
il
D (L.3)
y=1x/2

] I

Figure 39 Figure 40

Therefore, we have

vy = fff, av =Jf, [ 77 dz dy dx

x/2 0

V() = J) [, 2 - x - 2y)dy dx =3

> V(T =3

5.7.2. Center of mass in triple integrals

Definition 5.9: If the density function of a solid object that opees the region E is

(x,v,z) , in units of mass per unit volume, at any givemp(x, y, z) , then itsmassis

m = [[f, p(x,y,2)dv
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and itsmomentsabout the three coordinate planes are
My, = [If, xp(x,y,2)dV
My, = [[f, yo(x,y,2)dv
Myy = [[f; zp(x,y,2)dV
Then, the center of mass is at the péity, z), where
My, M

_ _ xz _
X = — —_— 7 = —==
m y m

Example 23:Find the center of mass of a solid of constansitgthat is bounded by the

parabolic cylinderx = y? and the planes = z,z = 0 andx = 1.

Solution: The solidE and its projection onto they —plane are shown in Figures 41 and

42. The lower and upper surfacestoére the planes = 0 & z = x, so we describg as

a type 1 region:
E={(xy,2)|-1<y<1,y?<x<10<z<x}

Then, if the density ip(x,y,z) = p , the mass is

1 1
m=f[f, pav=[_ [ pdzdxdy
=p [t [Lxdxdy = fl[f]ld
=pllpxdedy=pl |5 dy

=L —yHay =p [ (1-y"dy
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Because of the symmetry Bfandp about thecz —plane, we can immediately say that

M,, = 0 and, thereforg = 0.

1 01

My, = fffE xp dV = f_lfyzfoxxp dz dx dy
1 1 1 [x3 1

=pf—1fy2x2dx dy=pf_1 [?]yz dy

_2p 1 _2p y71
=Tha-ydy=2ly -7

1 .1
My, = fffE zpdV = f_l fyz fox zp dz dx dy
1 122" 1 1
=p/, fyz [27]0 dx dy = gf_l fyz x2dx dy

1
=2 —y*)dy

Therefore the center of mass is

s 5 7)) = (Myz Mxz May) _ (_4/’/7 _2/’/7)
(x,y,z) _(m "m’' m ) o 4p/5'0'4p/5

=(05)
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Tk ."'I o
=3
=X
' D | =
E =l 0 R
J_#,-F.”'_ ¥ 0 v
e
X f.--' |_
Figure 41 gbre 42
Exercise 5.7

1. Use atriple integral to find the volume of thdduling solid regions.
a. The tetrahedron enclosed by the coordinate plamestiae plan€x +y + z =
4.
b. The solid enclosed by the parabolaig y? + z? and the planer = 16.
c. The rectangular solid in the first octant boundecthe coordinate planes and
the planesx = 1,y = 2 andz = 3.
d. The region bounded by the paraboloids 8 — x* — y? andz = x? + y2.
e. The region in the first octant enclosed by thenddirx* + z? = 4 and the
planey = 3.
2. Find the mass and center of mass of the goldth the given density functign
a. E isthe tetrahedron bounded by the planes 0,y =0,z=0,x+y +z =
L px,y,2)=y.
b. Eisthecubegivenly<x<a,0<y<a,0<z<a;p(xvyz)=x?+
y? + z2.
c. E is a solid bounded by the parabolic cylindex 1 — y? and the planes
x+z=1x=0andz =0; p(x,y,z) = 4.
d. Eis a solid bounded below by the digkx? + y? < 4 in the planez = 0 and
above by the paraboloid = 4 — x2 — y?; p(x,y, z) = p(constant).
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e. E is a solid bounded below by the surface 4y?, above by the plane= 4,
and an the ends by the planes- 1 andx = —1: p(x, y, z) = p(constant).

f. E is a solid bounded below by the plane 0, on the sides by the elliptical
cylinderx? + 4y2 = 4 and above by the plane= 2 — x; p(x,y,2) =
p(constant).

g. E is a solid bounded below by the parabolaig¢ x? + y? and above by the

planez = 4; p(x,y,z) = p(constant).
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Unit Summary:

» If fis defined on a closed, bounded rectangular regionthexy plane, then the
double integral of overRr is given by

ffR f(x,y)dA = limpy, noo 2k=12k=1f (" ")

But if R is given byla, b] X [c, d], then the above limit is approximated by

D WYEST R T

k=1k=1

Therefore ff, f(x,y)dA = fcd fff(x, y)dxdy

» If fis continuous on a type | regiédnwith
D={(yla<x<bg,(x) <y<g,(x)}, then

[l fGyda =[] [ f(xy)dydx

= If fis continuous on a type | regiédnwith
D ={(xy)lc <x <d h(y) <x<h,(y)}, then

- _ rd rha)
ffD f(x,y)dA _fc fhl(y) f(x,y)dxdy
* The polar coordinate@, 8) of a point are related to the rectangular cootdma

(x,y) by
r? = x2% 4+ y? X =1cos6 y =r1sinf
= If fis continuous on a polar rectan@agyiven by0 < a <r < bh,a < 6 < B with

0<pB—a<2mthen
_ (B b .
/I, f,y)dA= [ [ f(rcos@,rsin®)rdrdo

» The triple integral of over the region or boR is given by

fffB f(x, Y Z)dV = lirnl,m,n—mo Z%=1 Z?:l Zzzlf(xijk*'yijk*ﬂzijk*)

If B is given byB = [a, b] X [c,d] X [r, s], the limit is approximated by
. * * * d b
imym noo Yict i1 2k=1f (i Vi zij”) = f: fc fa f(x,y,z)dxdydz

Therefore [[f, f(x,y,2)dV = [* [* [} f(x,y,2)dxdydz
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= To convert from cylindrical to rectangular coordes we use the relation

x =rcosf y=rsinf zZ=2z
And to convert from rectangular to cylindrical cdiorates, we use
r? = x2 4+ y? tan9=% z=1z

» The triple integration in cylindrical coordinatessgiven by

B rhy(0) pup(rcosf,rsinf)
ﬂ] flx,y,2)dV = f f f(rcos@,rsin@ ,z)r dzdrd6
E a “h

1(8) Yuq(rcosf,rsinb)
= To convert from spherical to rectangular coordisatee use the relation
x = psin@cos 6 y =psin@sinf z=pcos®
And to convert from rectangular to cylindrical cdiorates, we use

z

VxZ+y2+2z2

p? =x%+y?+ z2 tan9=3;’ cos @ =

» The triple integration in cylindrical coordinatesgiven by
e fGey,z)av =

fcd ff f;f(p sin@ cos @, psin@sinf,pcos@)p?sin® dpdod@
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9.

Miscellaneous Exercises

Evaluateff, (1 —6x*y)dA, whereR = {(x,y)|0<x <2,-1<y <1}.
Find the volume of the region bounded by the pdmtta = x? + y? and below
by the triangle enclosed by the lines= x,x = 0 andx + y = 2 in thexy plane.

Evaluatef[ xy dA, whereR is the region bounded by the lings= x,y = 2x and
x+y=2.

Find the volume of the solid whose base is theore@i thexy plane that is
bounded by the paraboja= 4 — x? and the liney = 3x, while the top of the solid
is bounded by the plae= x + 4.

sinx

Calculateff, dA, whereRr is the triangle in they plane bounded by the

X

x —axis, the liney = x and the linec = 1.

Evaluate the following integrals by converting themo polar coordinates

a. ffD 2xy dA, whereD is the portion of the region between the circlesadius 2

and radius 5 centered at the origin that lies enfitst quadrant.

b. [f, e*"*¥*dA, whereD is the unit circle centered at the origin.

. Find the area of the regidhenclosed by the parabagla= x? and the liney = x +

2.
Find the mass and center of mass of a thin platke$ityp = 3 bounded by the
linesx = 0,y = x and the parabola = 2 — x? in the first quadrant.

Find the area of the region bounded by the parahotay? — 1 andx = 2y? — 2.

10.Find the mass and center of mass about thexis of a thin plate bounded by the

curvesx = y? andx = 2y — y? if the density at the poirfte, y) isp(x,y) =y + 1

11.Evaluatefff, x dV, whereE is the solid region bounded by the cylindér+ y* =

4 and the plan@y + z = 4.

12.Using spherical coordinates evaluéﬂ; 16z dV, whereE is the upper half of the

spherex? + y? + z2 = 1.
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13.Find the volume of the regian enclosed by the surfaces= x? + 3y? and
z=8—x%—y2

14.Find the mass and center of mass of a solid oftaahdensity bounded below by
the paraboloid = x + y? and above by the plame= 4.

15. A solid of constant density is bounded below byglanez = 0, on the sides by
the elliptical cylinderc? + 4y2 = 4 and above by the plame= 2 — x, then find

the mass and center of mass of the solid.
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